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credits: Craig Costello's ECC2017 talk




Isogenies

Let E, E’ be two elliptic curves, and let ¢ : E — E’ be a map
between them. ¢ is called an isogeny, if

m ( is a surjective group homomorphism
m © is a group homomorphism with finite kernel

® ¢ is a non-constant rational map with p(Ofg) = O



Isogenies

Let E, E’ be two elliptic curves, and let ¢ : E — E’ be a map
between them. ¢ is called an isogeny, if

m ( is a surjective group homomorphism
m © is a group homomorphism with finite kernel

® ¢ is a non-constant rational map with p(Ofg) = O

m For any finite subgroup H C E, there exists an isogeny
¢ : E— E':= E/H with kernel H

m For (separable) isogenies, # ker(¢y) is the degree of ¢
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Factoring isogenies

Definition (Universal property)

Let ¢ : E — E’ be an isogeny. If P € ker(¢), then there exist
isogenies v, ¢ such that ker(y)) = (P) and

p=¢oy
with deg(y) = deg(¢) - deg(z))

m Factorisation is unique up to composition with isomorphisms

Definition (j-invariant)

Let E : y?> = x3 + ax + b. Then, the j-invariant of E is

433

(E) :=1728 - ——=—
J(E) = 1728 4a3 + 27b2

€ sz.



Supersingular isogeny graphs

Definition (¢-isogeny graph)

The supersingular ¢-isogeny graph over F > consists of

m vertices are j-invariants of supersingular elliptic curves defined
over Fp»

m edges between j and j' correspond to an /-isogeny between
two elliptic curves with j-invariants j and J'.
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Supersingular isogeny graphs

Definition (¢-isogeny graph)

The supersingular ¢-isogeny graph over F > consists of

m vertices are j-invariants of supersingular elliptic curves defined
over Fp»

m edges between j and j' correspond to an /-isogeny between
two elliptic curves with j-invariants j and J'.

m connected, £ + 1-regular graph
m graph has ~ p/12 vertices

m expander property: random walk of log(p) steps is almost as
good as uniformly sampling the vertices

m path finding is postulated to be exponentially hard both
classically and quantumly
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Idea: Alice and Bob walk in two different isogeny graphs on the
same vertex set.
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SIDH (cont.)

m Fix a prime p such that p = Ny N> — 1, EO/IF% and bases
(Pa, Qa) = Eo[M1], (P, @s) = Eo[N2]
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SIDH (cont.)

m Fix a prime p such that p = Ny N> — 1, EO/IF% and bases
(Pa, Qa) = Eo[M1], (P, @s) = Eo[N2]

m Alice's secret is

A= Pp+ [ska]Qa
m Bob's secret is
B:=Pg+ [SkB]QB
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m Fix a prime p such that p = Ny N> — 1, EO/IF% and bases
(Pa, Qa) = Eo[M1], (P, @s) = Eo[N2]

m Alice's secret is

A= Pp+ [ska]Qa
m Bob's secret is
B:=Pg+ [SkB]QB

Ea _E/
m Alice sends pa(Pp),
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SIDH (cont.)

m Fix a prime p such that p = Ny N> — 1, EO/IF% and bases
(Pa, Qa) = Eo[M1], (P, @s) = Eo[N2]

m Alice's secret is

A= Py + [ska]Qa
m Bob's secret is
B:=Pg+ [SkB]QB

Ea _E/
m Alice sends pa(Pp),

E,, QDA(PB)v cPA(QB)
m Bob sends
Eg, p5(Pa), p5(Qa) Eap = E/(A,B)

m The shared secret is the j-invariant of Exp
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B-SIDH [Cos19]

m In SIDH the secret isogenies are relatively short
(Nl ~ N2 ~ \/’3)

m Between two randomly chosen supersingular elliptic curves an
isogeny of this degree does not exist in general

m Main idea of B-SIDH: Use isogenies such that Ny = Np =~ p
and p? — 1= Ny Nof

m To make this efficient, one works with curves and their twists
simultaneously (torsion-points are defined over . but all
computations can be done over )

m Keys are even smaller than in SIDH but it is also slower as
N1, N> are less smooth



Hard problems

Definition (Pure isogeny problem)

Given two isogenous supersingular elliptic curves E; and B,
compute an isogeny ¢ : E; — E».

Definition (SSI-T Problem)

Let ¢ : E; — E of degree Ny and let E1[Np] =: (P, Q).
Given E1, E;, ¢(P), ¢(Q), compute ¢.




Torsion point attacks [Petl7, QKL"21]

Target: SSI-T, when End(Ep) is known.

wa: Eg—Ex implies

Z+ ppobopp— End(En)
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Torsion point attacks [Petl7, QKL"21]

Target: SSI-T, when End(Ep) is known.

wa: Eg—Ex implies

Z+ ppobopp— End(En)

E
g
PA
0 C Eo Ex e
PA &
E>

m Consider 7 = [d] + pa 060 Hx and assume deg(T) = N3e
m Compute 7 = szg 0 1. 011 using torsion point information and
small meet-in-the-middle search
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Torsion point attacks (cont.)

Once 7 = [d] + ¢a 000 $a is known:
ker o4 = ker(T — [d]) N Ea [Na]

To break SSI-T problem, sufficient to find d and # such that

deg([d] + wa 000 pa) = Nie

m For j(Ep) = 1728, this yields norm equation
d®+ Nf (S +p (b* +2°)) = Nje

m Know how to find solutions when Ny > p/Nj.



Séta [DDF*21]

Previous work [Pet17, QKLT21, KMPW21]:
m Ep:y2 =x3+ x or Eg can be chosen by the adversary

m depending on Ep unbalanced parameters (i.e. N >> Njp) give
rise to key recovery attacks



Séta [DDF*21]

Previous work [Pet17, QKLT21, KMPW21]:
m Ep:y2 =x3+ x or Eg can be chosen by the adversary

m depending on Ep unbalanced parameters (i.e. N >> Njp) give
rise to key recovery attacks

Séta public key encryption:
m backdoor curve used as public parameter
m message corresponds to an isogeny from this starting curve

m ciphertext contains codomain of isogeny and torsion point
images

decryption performed using torsion point attacks



SIKE: Supersingular Isogeny Key Encapsulation

m Submission to NIST's PQ standardisation process:

m SIKE.PKE: El Gamal-type system with IND-CPA security proof
m SIKE.KEM: generically transformed system with IND-CCA
security

m Smallest communication complexity for each of the security
levels (1,3,5)

m Slowest among all proposals for each of the security levels

m https://sike.org/
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Static-static key exchange

Can we use SIDH as a drop-in replacement for Diffie-Hellman?
= Adaptive attacks [GPST16] and [FP22]

Static-static key exchange:
m FO-transform? X (one party has to use ephemeral keys)
m k-SIDH [AJL17]? / (very inefficient)
m HealSIDH [FP21]? v (interactive)
= New proofs of knowledge for SIDH keys [DDGZ21] v

Post-quantum version of Signal's initial X3DH key exchange:
= SI-X3DH [DG21] v



Proof of Isogeny Knowledge

Goal: Prove knowledge of secret isogeny ¢ of degree (7.
De Feo-Jao-Plit scheme: Let Ey[¢52] = (Po, Qo). (Eo, Po, Qo) are
public parameters and (Ez, ©(Po), v(Qo)) are the public key.

Prover generates randomly ¢52-torsion point
Ky := [a]Po + [b] Qo corresponding to ¢ : Eg — E>

EO 7 > E1
¥ Y’
E2 Ld > E3

and commits to E and Ejs.



Proof of Isogeny Knowledge

Goal: Prove knowledge of secret isogeny ¢ of degree (7.
De Feo-Jao-Plit scheme: Let Ey[¢52] = (Po, Qo). (Eo, Po, Qo) are
public parameters and (Ez, ©(Po), v(Qo)) are the public key.

Prover generates randomly ¢52-torsion point
Ky := [a]Po + [b] Qo corresponding to ¢ : Eg — E>

EO 7 > E1
¥ Y’
E2 Ld > E3

and commits to E and Ejs.
Verifier challenges the prover with a random bit ¢ < {0,1}
Prover reveals (a, b), if c =0, and ¢ (ker(y)), if c = 1.
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Soundness issue of De Feo-Jao-Pliit scheme [DDGZ21]:

m Prover generates randomly ¢3*-torsion point
Ky := [a]Po + [b] Qo corresponding to ¢ : Eg — E>

.
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Proof of Isogeny Knowledge (cont.)

Soundness issue of De Feo-Jao-Pliit scheme [DDGZ21]:

m Prover generates randomly ¢3*-torsion point
Ky := [a]Po + [b] Qo corresponding to ¢ : Eg — E>

m Prover generates randomly ¢’ : E, — E3 of degree (7!

Eo

X
o'

E2 > E3




Proof of Isogeny Knowledge (cont.)

Soundness issue of De Feo-Jao-Pliit scheme [DDGZ21]:
m Prover generates randomly ¢3*-torsion point
Ky := [a]Po + [b] Qo corresponding to ¢ : Eg — E>
m Prover generates randomly ¢’ : E, — E3 of degree (7!

m Prover generates random isogeny ¢ : E3 — E; of degree (32
and picks Pj, Q) such that ker(¢") = [a]P} + [b]Q}
m Prover publishes public key (E1, Py, Qf)

Eo
X
o'

E2 > E3

E




Proof of Isogeny Knowledge (cont.)

Soundness issue of De Feo-Jao-Pliit scheme [DDGZ21]:

Prover generates randomly ¢52-torsion point
Ky := [a]Po + [b] Qo corresponding to ¢ : Eg — E>
Prover generates randomly ¢’ : E, — E3 of degree (7!

Prover generates random isogeny v’ : Ez — E; of degree (3
and picks Pj, Q) such that ker(¢") = [a]P} + [b]Q}

Prover publishes public key (E1, Pj, Q)

Eo

x‘
o'

E2 > E3

K
Prover can respond to all challenges

Isogeny Eq — E; of degree ¢7* will not exist in general

E




Oblivious Pseudorandom Function (OPRF)

An OPREF is a two-party protocol to evaluate a PRF f(k, m)
where:

m The client learns f(k, m), one evaluation of a PRF on a
chosen input

m The server learns nothing about m

-
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Oblivious Pseudorandom Function (OPRF)

An OPREF is a two-party protocol to evaluate a PRF f(k, m)
where:

m The client learns f(k, m), one evaluation of a PRF on a
chosen input

m The server learns nothing about m
f(k,m)

m An OPRF is called verifable, if the server proves to the client
that output was computed using the key k

commit(k)

AN

~

A

1
L




Existing Constructions

Parameters: group G of order g, hash functions Hy, H> onto G
and {0, 1}* resp.

Client C(m) Server S(k)

Pick r g Zq
Set a « (H1(m))" -2

If a€ G, set b+ ak

b
—

If be G, set v« bl/r
Output Ha(m, v)



Existing Constructions

Parameters: group G of order g, hash functions Hy, H> onto G
and {0, 1}* resp.

Client C(m) Server S(k)

Pick r g Zq
Set a « (H1(m))" -2

If a€ G, set b+ ak

b
—

If be G, set v« bl/r
Output Ha(m, v)
Post-quantum OPREF:
m Construction from lattices [ADDS19]
m Construction from isogenies [BKW20]
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Oblivious Pseudorandom Functions from

Isogenies [BKW20]

EO DPm EM
O
Client Emr
Server
E, Eni Pk
X
Enmrk

f(k’ m) = H(maj(El\/lk)a pk)
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Attacking the Pseudorandomness [BKM™21]

Eo Em
\
Ex Emk Pl
r Enri

m Use queries to the OPRF to obtain Ey and ¢x(Eg[2"]) up to
scalar multiplication

m Given P € Eg[2"], compute (¢x(P)) and Ex/{(pk(P)) = Epxk




Updateable Public-Key Encryption

Desired properties:

Correctness

Forward secrecy

[
m Post-compromise security
m Asynchronicity

m

Key indistinguishability



Updateable Public-Key Encryption from SIDH [EJKM20]
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Eo on > E A; " E Ao
Y8 wgl 1/114[
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Idea: Use [KLPT14] to compute ¢,, from @4, 0 ¢4, to achieve
post-compromise security and forward secrecy



Updateable Public-Key Encryption from SIDH [EJKM20]

P
Eo o En, Pay Ea,
(] Y ¥

/ /

YA YA,
Eg ———— EAlB _ EAQB

Idea: Use [KLPT14] to compute ¢,, from @4, 0 ¢4, to achieve
post-compromise security and forward secrecy

Caveats:
m Very unbalanced parameters
m No asynchronicity

m No key indistinguishability



Conclusion

m SIDH has small keys and is reasonably fast
m Some advanced cryptographic protocols from SIDH exist

Many subtle issues when building schemes from SIDH

Further work is required:

m Find new isogeny-based protocols

= Remove limitations of existing constructions
(e.g. sample supersingular elliptic curves without revealing
their endomorphism ring)

m Cryptanalyse existing constructions
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