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Isogenies

Definition

Let E , E ′ be two elliptic curves, and let φ : E → E ′ be a map
between them. φ is called an isogeny, if

φ is a surjective group homomorphism

φ is a group homomorphism with finite kernel

φ is a non-constant rational map with φ(OE ) = OE ′

For any finite subgroup H ⊂ E , there exists an isogeny
φ : E → E ′ := E/H with kernel H

For (separable) isogenies, # ker(φ) is the degree of φ
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Factoring isogenies

Definition (Universal property)

Let φ : E → E ′ be an isogeny. If P ∈ ker(φ), then there exist
isogenies ψ, ϕ such that ker(ψ) = ⟨P⟩ and

φ = ϕ ◦ ψ
with deg(φ) = deg(ϕ) · deg(ψ)

Factorisation is unique up to composition with isomorphisms

Definition (j-invariant)

Let E : y2 = x3 + ax + b. Then, the j-invariant of E is

j(E ) := 1728 · 4a3

4a3 + 27b2
∈ Fp2 .
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Supersingular isogeny graphs

Definition (ℓ-isogeny graph)

The supersingular ℓ-isogeny graph over Fp2 consists of

vertices are j-invariants of supersingular elliptic curves defined
over Fp2

edges between j and j ′ correspond to an ℓ-isogeny between
two elliptic curves with j-invariants j and j ′.

connected, ℓ+ 1-regular graph

graph has ≈ p/12 vertices

expander property: random walk of log(p) steps is almost as
good as uniformly sampling the vertices

path finding is postulated to be exponentially hard both
classically and quantumly
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SIDH [JD11]

Idea: Alice and Bob walk in two different isogeny graphs on the
same vertex set.

2- and 3-isogeny graph on F1272
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SIDH (cont.)

Fix a prime p such that p = N1N2 − 1, E0/F2
p and bases

⟨PA,QA⟩ = E0[N1], ⟨PB ,QB⟩ = E0[N2]

Alice’s secret is
A := PA + [skA]QA

Bob’s secret is
B := PB + [skB ]QB

Alice sends
EA, φA(PB), φA(QB)

Bob sends
EB , φB(PA), φB(QA)

The shared secret is the j-invariant of EAB
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B-SIDH [Cos19]

In SIDH the secret isogenies are relatively short
(N1 ≈ N2 ≈

√
p)

Between two randomly chosen supersingular elliptic curves an
isogeny of this degree does not exist in general

Main idea of B-SIDH: Use isogenies such that N1 ≈ N2 ≈ p
and p2 − 1 = N1N2f

To make this efficient, one works with curves and their twists
simultaneously (torsion-points are defined over Fp4 but all
computations can be done over Fp2)

Keys are even smaller than in SIDH but it is also slower as
N1,N2 are less smooth
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Hard problems

Definition (Pure isogeny problem)

Given two isogenous supersingular elliptic curves E1 and E2,
compute an isogeny ϕ : E1 → E2.

Definition (SSI-T Problem)

Let ϕ : E1 → E2 of degree N1 and let E1[N2] =: ⟨P,Q⟩.
Given E1, E2, ϕ(P), ϕ(Q), compute ϕ.
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Torsion point attacks [Pet17, QKL+21]

Target: SSI-T, when End(E0) is known.

φA : E0→EA implies

Z+ φA ◦ θ ◦ φ̂A ↪→ End(EA)

E1

E0 EA

E2

θ

φA

φ̂A

ψ1

ψ2

ψe

Consider τ = [d ] + φA ◦ θ ◦ φ̂A and assume deg(τ) = N2
2e

Compute τ = ψ̂2 ◦ ψe ◦ ψ1 using torsion point information and
small meet-in-the-middle search
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Torsion point attacks (cont.)

Once τ = [d ] + φA ◦ θ ◦ φ̂A is known:

ker φ̂A = ker(τ − [d ]) ∩ EA [NA]

To break SSI-T problem, sufficient to find d and θ such that

deg([d ] + φA ◦ θ ◦ φ̂A) = N2
2e

For j (E0) = 1728, this yields norm equation

d2 + N2
1

(
c2 + p

(
b2 + a2

))
= N2

2e

Know how to find solutions when N2 > pN1.
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Séta [DDF+21]

Previous work [Pet17, QKL+21, KMPW21]:

E0 : y2 = x3 + x or E0 can be chosen by the adversary

depending on E0 unbalanced parameters (i.e. N2 >> N1) give
rise to key recovery attacks

Séta public key encryption:

backdoor curve used as public parameter

message corresponds to an isogeny from this starting curve

ciphertext contains codomain of isogeny and torsion point
images

decryption performed using torsion point attacks
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SIKE: Supersingular Isogeny Key Encapsulation

Submission to NIST’s PQ standardisation process:

SIKE.PKE: El Gamal-type system with IND-CPA security proof
SIKE.KEM: generically transformed system with IND-CCA
security

Smallest communication complexity for each of the security
levels (1,3,5)

Slowest among all proposals for each of the security levels

https://sike.org/
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Static-static key exchange

Can we use SIDH as a drop-in replacement for Diffie-Hellman?

Adaptive attacks [GPST16] and [FP22]

Static-static key exchange:

FO-transform? ✗ (one party has to use ephemeral keys)

k-SIDH [AJL17]? ✓ (very inefficient)

HealSIDH [FP21]? ✓ (interactive)

New proofs of knowledge for SIDH keys [DDGZ21] ✓

Post-quantum version of Signal’s initial X3DH key exchange:

SI-X3DH [DG21] ✓
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Proof of Isogeny Knowledge

Goal: Prove knowledge of secret isogeny φ of degree ℓe11 .

De Feo-Jao-Plût scheme: Let E0[ℓ
e2
2 ] = ⟨P0,Q0⟩. (E0,P0,Q0) are

public parameters and (E1, φ(P0), φ(Q0)) are the public key.

1 Prover generates randomly ℓe22 -torsion point
Kψ := [a]P0 + [b]Q0 corresponding to ψ : E0 → E2

E0 E1

E2 E3

ψ

φ

ψ′

φ′

and commits to E2 and E3.

2 Verifier challenges the prover with a random bit c← {0, 1}
3 Prover reveals (a, b), if c = 0, and ψ(ker(φ)), if c = 1.
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Proof of Isogeny Knowledge (cont.)

Soundness issue of De Feo-Jao-Plût scheme [DDGZ21]:

Prover generates randomly ℓe22 -torsion point
Kψ := [a]P0 + [b]Q0 corresponding to ψ : E0 → E2

Prover generates randomly φ′ : E2 → E3 of degree ℓe11
Prover generates random isogeny ψ′ : E3 → E1 of degree ℓe22
and picks P ′

0,Q
′
0 such that ker(ψ̂′) = [a]P ′

0 + [b]Q ′
0

Prover publishes public key (E1,P
′
0,Q

′
0)

E0

E2 E3

E1

ψ

φ′

ψ′

Prover can respond to all challenges

Isogeny E0 → E1 of degree ℓe11 will not exist in general
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Oblivious Pseudorandom Function (OPRF)

An OPRF is a two-party protocol to evaluate a PRF f (k ,m)
where:

The client learns f (k,m), one evaluation of a PRF on a
chosen input

The server learns nothing about m

BP

commit(k)

f (k,m) ⊥

An OPRF is called verifable, if the server proves to the client
that output was computed using the key k
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Existing Constructions

Parameters: group G of order q, hash functions H1, H2 onto G
and {0, 1}ℓ resp.

Client C (m) Server S(k)

Pick r ←R Zq

Set a← (H1(m))r
a−−−−→

If a ∈ G, set b ← ak

b←−−−−
If b ∈ G, set v ← b1/r

Output H2(m, v)

Post-quantum OPRF:

Construction from lattices [ADDS19]

Construction from isogenies [BKW20]
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Oblivious Pseudorandom Functions from
Isogenies [BKW20]

Client
Server

E0 EM

EMr

Ek EMk

EMrk

ϕm

ϕr

ϕk

ϕ̂′r

f (k ,m) = H(m, j(EMk), pk)
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Oblivious Pseudorandom Functions from
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Client
Server

E0 EM

EMr

Ek EMk

EMrk

ϕm

ϕr

ϕk

ϕ̂′r

f (k ,m) = H(m, j(EMk), pk)
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Attacking the Pseudorandomness [BKM+21]

E0 EM

EMr

Ek EMk

EMrk

ϕk

ϕm

ϕr

ϕ′k

ϕ̂′r

Use queries to the OPRF to obtain Ek and ϕk(E0[2
n]) up to

scalar multiplication

Given P ∈ E0[2
n], compute ⟨ϕk(P)⟩ and Ek/⟨ϕk(P)⟩ = EPk
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Updateable Public-Key Encryption

Desired properties:

Correctness

Forward secrecy

Post-compromise security

Asynchronicity

Key indistinguishability
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Updateable Public-Key Encryption from SIDH [EJKM20]

E0 EA1 EA2

EB EA1B EA2B

ψB

φA1

ψ′
B

φ′
A1

φA2

ψ′′
B

φ′
A2

φµ

Idea: Use [KLPT14] to compute φµ from φA2 ◦ φA1 to achieve
post-compromise security and forward secrecy

Caveats:

Very unbalanced parameters

No asynchronicity

No key indistinguishability
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Conclusion

SIDH has small keys and is reasonably fast

Some advanced cryptographic protocols from SIDH exist

Many subtle issues when building schemes from SIDH

Further work is required:

Find new isogeny-based protocols
Remove limitations of existing constructions
(e.g. sample supersingular elliptic curves without revealing
their endomorphism ring)
Cryptanalyse existing constructions
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