Cryptanalysis of an Oblivious PRF from Supersingular Isogenies

Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit and Antonio Sanso

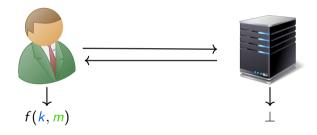
March 2022 CWI Student Seminar

- Definition of (V)OPRFs
- Applications
 - OPAQUE
 - PrivacyPass
- Isogenies and SIDH
- OPRF from isogenies
- Cryptanalytic results
 - Polytime and subexponential attacks
 - Requirement for trusted setup

Oblivious Pseudorandom Function (OPRF)

An OPRF is a two-party protocol to evaluate a PRF f(k, m) where:

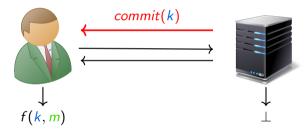
- The client learns f(k, m), one evaluation of a PRF on a chosen input
- The server learns nothing about m



Oblivious Pseudorandom Function (OPRF)

An OPRF is a two-party protocol to evaluate a PRF f(k, m) where:

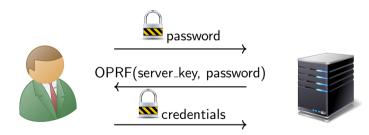
- The client learns f(k, m), one evaluation of a PRF on a chosen input
- The server learns nothing about m



An OPRF is called *verifable*, if the server proves to the client that output was computed using the key k

Use passwords that never leave your device

How to check a password that you have never seen? Registration Phase:

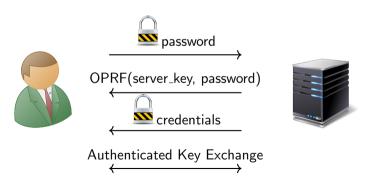


OPAQUE: OPRF + PAKE

Use passwords that never leave your device

How to check a password that you have never seen?

Login Phase:



- Generate cryptographically 'blinded' tokens that can be signed by server after client authenticates themselves (e.g. CAPTCHA solution)
- Security properties:
 - Unlinkability
 - 2 Unforgeability
- Construction:
 - VOPRF for issuance of tokens during blind signing phase
 - Verification of anonymous tokens during redemption phase

Existing Constructions

Parameters: group \mathbb{G} of order q, hash functions H_1 , H_2 onto \mathbb{G} and $\{0,1\}^{\ell}$ resp.

Client C(m) Server S(k)

Pick
$$r \leftarrow_R \mathbb{Z}_q$$

Set $a \leftarrow (H_1(m))^r \xrightarrow{a}$
If $a \in \mathbb{G}$, set $b \leftarrow a^k$
 \xleftarrow{b}
If $b \in \mathbb{G}$, set $v \leftarrow b^{1/r}$
Output $H_2(m, v)$

Existing Constructions

Parameters: group \mathbb{G} of order q, hash functions H_1 , H_2 onto \mathbb{G} and $\{0,1\}^{\ell}$ resp.

Pick
$$r \leftarrow_R \mathbb{Z}_q$$

Set $a \leftarrow (H_1(m))^r \xrightarrow{a}$
If $a \in \mathbb{G}$, set $b \leftarrow a^k$
 \xleftarrow{b}
If $b \in \mathbb{G}$, set $v \leftarrow b^{1/r}$
Output $H_2(m, v)$

Post-quantum OPRF:

- Construction from lattices [ADDS19]
- Construction from isogenies [BKW20]

Definition

Let E, E' be two elliptic curves, and let $\varphi: E \to E'$ be a map between them. φ is called an *isogeny*, if

- ${\scriptstyle \blacksquare } \varphi$ is a surjective group homomorphism
- ${\scriptstyle \blacksquare} \ \varphi$ is a group homomorphism with finite kernel
- φ is a non-constant rational map with $\varphi(\mathcal{O}_E) = \mathcal{O}_{E'}$

Definition

Let E, E' be two elliptic curves, and let $\varphi: E \to E'$ be a map between them. φ is called an *isogeny*, if

- φ is a surjective group homomorphism
- φ is a group homomorphism with finite kernel
- φ is a non-constant rational map with $\varphi(\mathcal{O}_E) = \mathcal{O}_{E'}$
- For any finite subgroup $H \subset E$, there exists an isogeny $\varphi : E \to E' := E/H$ with kernel H
- For (separable) isogenies, $\# \ker(\varphi)$ is the degree of φ

Definition (Universal property)

Let $\varphi : E \to E'$ be an isogeny. If $P \in \ker(\varphi)$, then there exist isogenies ψ, ϕ such that $\ker(\psi) = \langle P \rangle$ and

$$arphi = \phi \circ \psi$$

with $\mathsf{deg}(arphi) = \mathsf{deg}(\phi) \cdot \mathsf{deg}(\psi)$

Definition (Universal property)

Let $\varphi : E \to E'$ be an isogeny. If $P \in \ker(\varphi)$, then there exist isogenies ψ, ϕ such that $\ker(\psi) = \langle P \rangle$ and

$$arphi = \phi \circ \psi$$

with deg $(arphi) = \deg(\phi) \cdot \deg(\psi)$

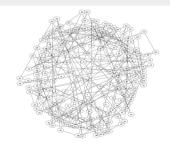
Factorisation is unique up to composition with isomorphisms

• Two elliptic curves are isomorphic if and only if they have the same *j*-invariant

Definition (ℓ -isogeny graph)

The supersingular ℓ -isogeny graph over \mathbb{F}_{p^2} consists of

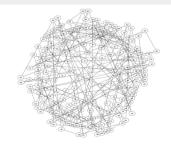
- vertices are *j*-invariants of supersingular elliptic curves defined over \mathbb{F}_{p^2}
- edges between j and j' correspond to an ℓ -isogeny between two elliptic curves with j-invariants j and j'.



Definition (ℓ -isogeny graph)

The supersingular ℓ -isogeny graph over \mathbb{F}_{p^2} consists of

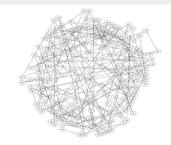
- vertices are *j*-invariants of supersingular elliptic curves defined over \mathbb{F}_{p^2}
- edges between j and j' correspond to an ℓ -isogeny between two elliptic curves with j-invariants j and j'.
- **\blacksquare** connected, $\ell + 1$ -regular graph



Definition (ℓ -isogeny graph)

The supersingular ℓ -isogeny graph over \mathbb{F}_{p^2} consists of

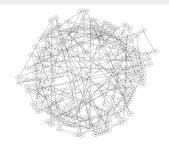
- vertices are *j*-invariants of supersingular elliptic curves defined over \mathbb{F}_{p^2}
- edges between j and j' correspond to an ℓ -isogeny between two elliptic curves with j-invariants j and j'.
- \blacksquare connected, $\ell+1\text{-regular}$ graph
- graph has $\approx p/12$ vertices



Definition (ℓ -isogeny graph)

The supersingular ℓ -isogeny graph over \mathbb{F}_{p^2} consists of

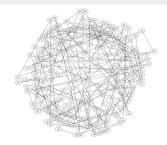
- vertices are *j*-invariants of supersingular elliptic curves defined over \mathbb{F}_{p^2}
- edges between j and j' correspond to an ℓ -isogeny between two elliptic curves with j-invariants j and j'.
- **\blacksquare** connected, $\ell + 1$ -regular graph
- graph has $\approx p/12$ vertices
- expander property: random walk of log(p) steps is almost as good as uniformly sampling the vertices



Definition (*l*-isogeny graph)

The supersingular ℓ -isogeny graph over \mathbb{F}_{p^2} consists of

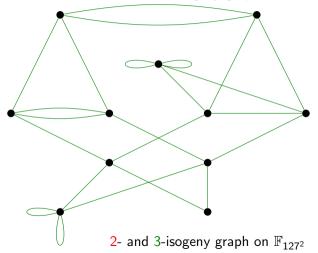
- vertices are *j*-invariants of supersingular elliptic curves defined over \mathbb{F}_{p^2}
- edges between j and j' correspond to an ℓ -isogeny between two elliptic curves with j-invariants j and j'.
- \blacksquare connected, $\ell+1\text{-regular graph}$
- graph has $\approx p/12$ vertices
- expander property: random walk of log(p) steps is almost as good as uniformly sampling the vertices
- path finding is postulated to be exponentially hard both classically and quantumly



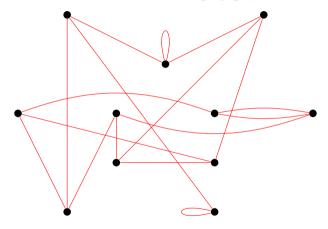
Idea: Alice and Bob walk in two *different* isogeny graphs on the same vertex set.

2- and 3-isogeny graph on \mathbb{F}_{127^2}

Idea: Alice and Bob walk in two *different* isogeny graphs on the same vertex set.

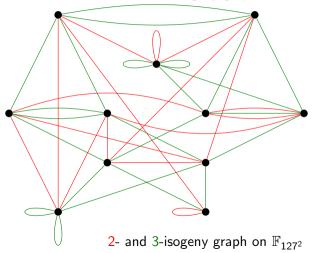


Idea: Alice and Bob walk in two *different* isogeny graphs on the same vertex set.

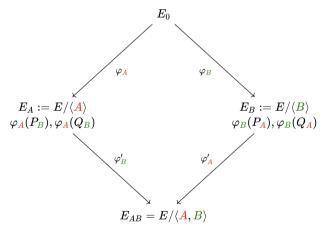


2- and 3-isogeny graph on \mathbb{F}_{127^2}

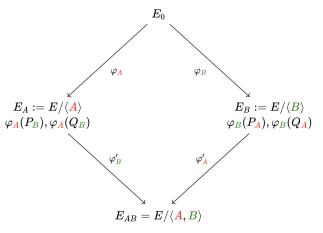
Idea: Alice and Bob walk in two *different* isogeny graphs on the same vertex set.



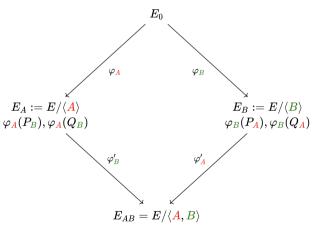
• Fix a prime p such that $p = N_1 N_2 - 1$, E_0 / \mathbb{F}_p^2 and bases $\langle P_A, Q_A \rangle = E_0[N_1]$, $\langle P_B, Q_B \rangle = E_0[N_2]$



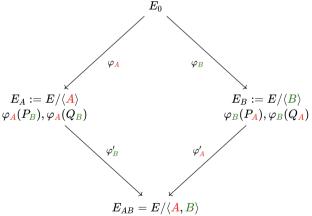
- Fix a prime p such that $p = N_1 N_2 1$, E_0 / \mathbb{F}_p^2 and bases $\langle P_A, Q_A \rangle = E_0[N_1]$, $\langle P_B, Q_B \rangle = E_0[N_2]$
- Alice's secret is $A := P_A + [sk_A]Q_A$
- Bob's secret is
 B := P_B + [sk_B]Q_B



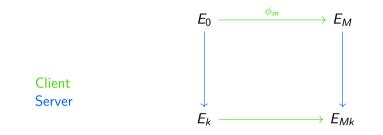
- Fix a prime p such that $p = N_1 N_2 1$, E_0 / \mathbb{F}_p^2 and bases $\langle P_A, Q_A \rangle = E_0[N_1]$, $\langle P_B, Q_B \rangle = E_0[N_2]$
- Alice's secret is $A := P_A + [sk_A]Q_A$
- Bob's secret is
 B := P_B + [sk_B]Q_B
- Alice sends
 E_A, φ_A(P_B), φ_A(Q_B)
- Bob sends
 E_B, φ_B(P_A), φ_B(Q_A)

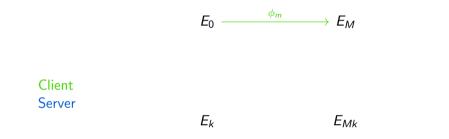


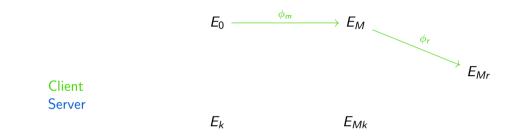
- Fix a prime p such that $p = N_1 N_2 1$, E_0 / \mathbb{F}_p^2 and bases $\langle P_A, Q_A \rangle = E_0[N_1]$, $\langle P_B, Q_B \rangle = E_0[N_2]$
- Alice's secret is $A := P_A + [sk_A]Q_A$
- Bob's secret is
 B := P_B + [sk_B]Q_B
- Alice sends
 E_A, φ_A(P_B), φ_A(Q_B)
- Bob sends
 E_B, φ_B(P_A), φ_B(Q_A)

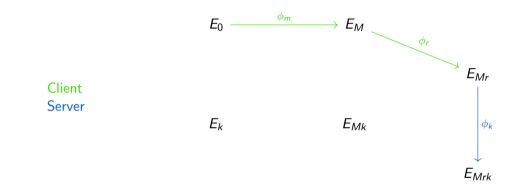


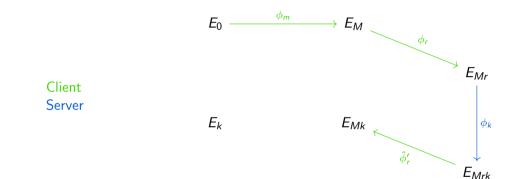
• The shared secret is the *j*-invariant of *E*_{AB}

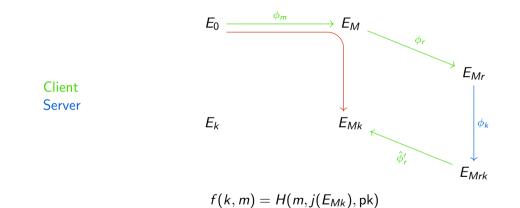


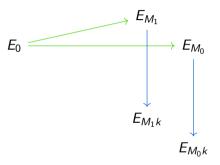


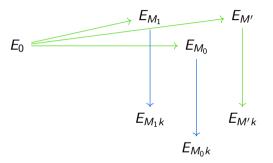




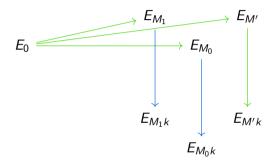




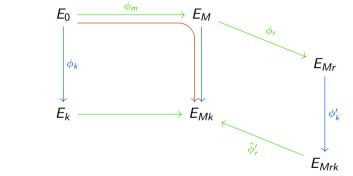




- An attacker should not be able to evaluate the OPRF without the server's help even after multiple queries
- Pseudorandomness of [BKW20] is based on a new 'auxiliary one-more' assumption

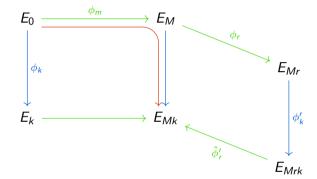


Attacking the 'one-more' Assumption



Find E_k and $\langle \phi_k(M) \rangle$ for some point $M \in E_0[2^n]$

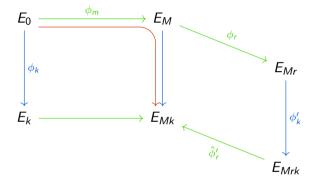
Attacking the 'one-more' Assumption



Find E_k and $\langle \phi_k(M) \rangle$ for some point $M \in E_0[2^n]$

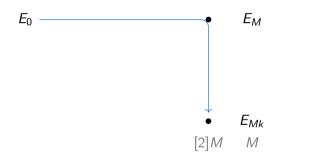
• Combine multiple points to obtain $\phi_k(E_0[2^n])$ up to scalar multiplication

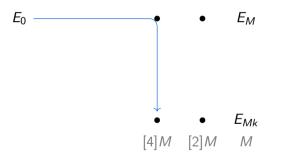
Attacking the 'one-more' Assumption

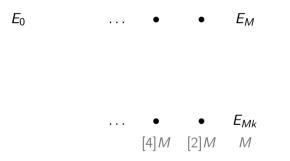


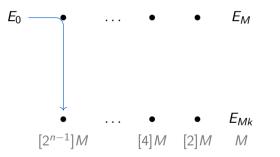
- Find E_k and $\langle \phi_k(M) \rangle$ for some point $M \in E_0[2^n]$
- Combine multiple points to obtain $\phi_k(E_0[2^n])$ up to scalar multiplication
- Given point $P \in E_0[2^n]$, compute $\langle \phi_k(P) \rangle$ and finally $E_k / \langle \phi_k(P) \rangle = E_{Pk}$

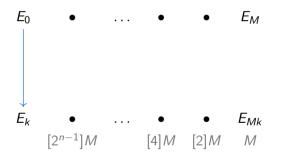
 E_0

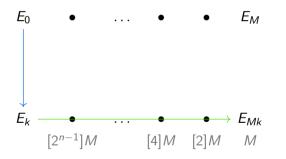


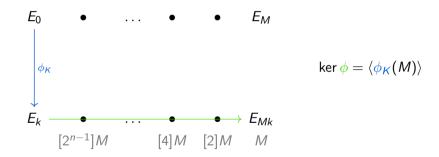












Given *M* on $E_0[2^n]$, we can recover $\langle \phi_K(M) \rangle$

We query on M, N, M + N and obtain

$$M' = [\alpha]\phi_{\kappa}(M)$$

$$N' = [\beta]\phi_{\kappa}(N)$$

$$R' = [\gamma]\phi_{\kappa}(M+N) = [a]M' + [b]N'$$

We query on M, N, M + N and obtain

$$\begin{array}{l}
M' = [\alpha]\phi_{\mathcal{K}}(M) \\
N' = [\beta]\phi_{\mathcal{K}}(N) \\
R' = [\gamma]\phi_{\mathcal{K}}(M+N) = [a]M' + [b]N'
\end{array}\right\} \Rightarrow \frac{\alpha}{\beta} = \frac{b}{a}$$

We query on M, N, M + N and obtain

$$\begin{array}{l}
M' = [\alpha]\phi_{\mathcal{K}}(M) \\
N' = [\beta]\phi_{\mathcal{K}}(N) \\
R' = [\gamma]\phi_{\mathcal{K}}(M+N) = [a]M' + [b]N'
\end{array}\right\} \Rightarrow \frac{\alpha}{\beta} = \frac{b}{a}$$

Breaking the assumption

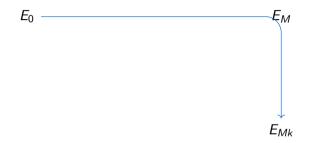
Given any
$$P = [x]M + [y]N$$
, we can compute $\langle \phi_K(P) \rangle = \langle [x]M' + [y]\frac{\alpha}{\beta}N' \rangle$

- $O(\lambda)$ queries recover $\langle \phi_K(M) \rangle$ for any M in $E_0[2^n]$
- With three subgroups, we can compute \$\langle \phi_K(P) \rangle\$ for any \$P\$ without further interactions
- This breaks the 'one-more' assumption

- $O(\lambda)$ queries recover $\langle \phi_K(M) \rangle$ for any M in $E_0[2^n]$
- With three subgroups, we can compute \$\langle \phi_K(P) \rangle\$ for any \$P\$ without further interactions
- This breaks the 'one-more' assumption

But

It is easy to check that query points have full order



Using full-order queries

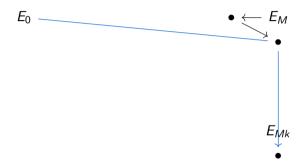
 E_0

 E_{Mk}

Using full-order queries

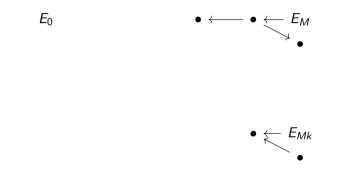
E₀

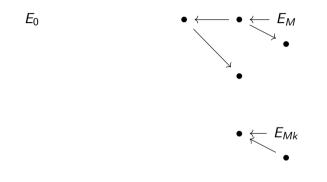
E_{Mk}

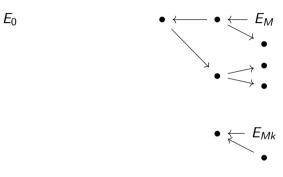


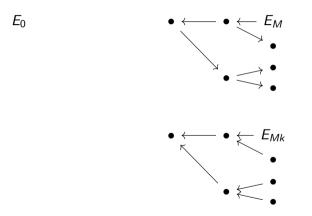
Using full-order queries

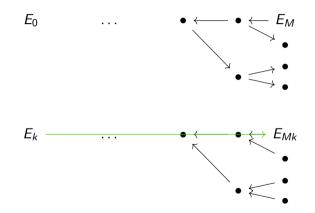
 $E_0 \qquad \qquad \bullet \overleftarrow{E_M}_{\bullet}$ $\bullet \overleftarrow{E_Mk}_{\bullet}$



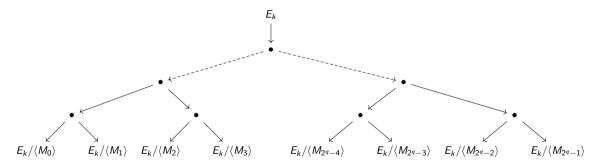




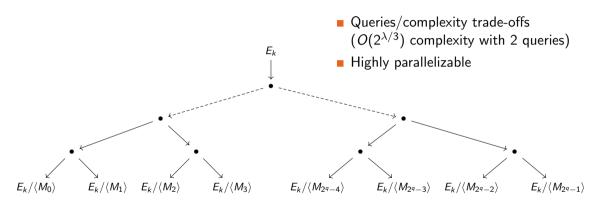




Building a tree



Building a tree



The full attack:

- Use the binary tree to recover points on E_k
- Second part of the attack same as polytime attack
- Subexponential complexity for balanced trade-offs

The full attack:

- Use the binary tree to recover points on E_k
- Second part of the attack same as polytime attack
- Subexponential complexity for balanced trade-offs

Countermeasures:

- No obvious countermeasures
- Increase the parameter size? \Rightarrow very large degrees
- New efficient solutions?

Parameters			MITM		Running Time
log p	λ	q	Distance	Memory (kB)	(s)
112	8	3	8	3.5	15
216	16	6	10	13.8	212 (3.53 m)
413	32	8	16	211.4	1,371 (22.85 m)
859	67	11	26	14,073	163,869 (1.89 d)
1,614	128	18	40	3,384,803	174,709,440 (5.54 y)

Available at https://github.com/isogenists/isogeny-OPRF

- The client
- A third-party
- The server
- Known curve ($j(E_0) = 1728$)
- Trusted setup

- The clientA third-party can backdoor $E_0 \implies$ key-recovery attack on the server
- The server
- Known curve $(j(E_0) = 1728)$
- Trusted setup

- The client A third-party $\left. \begin{array}{c} \text{can backdoor } E_0 \implies \text{key-recovery attack on the server} \end{array} \right.$
- The server
 Known curve (*j*(*E*₀) = 1728)

breaks the Supersingular Isogeny Collision assumption

Trusted setup

- The client A third-party $\left. \begin{array}{c} \text{can backdoor } E_0 \implies \text{key-recovery attack on the server} \end{array} \right.$

breaks the Supersingular Isogeny Collision assumption

- The server
 Known curve (*j*(*E*₀) = 1728)
- Trusted setup

- Two attacks on 'one-more' assumption and the pseudorandomness of Boneh et al.'s OPRF
- A proof of concept implementation of the attack
- Need for a trusted setup
- CSIDH-based OPRF construction is not affected by the attack

Paper available at https://ia.cr/2021/706