Cryptanalysis of an Oblivious PRF from Supersingular Isogenies

Andrea Basso, Péter Kutas, <u>Simon-Philipp Merz</u>, Christophe Petit and Antonio Sanso

> July 2022 IBM Isogeny Day

Content

- Definition of (V)OPRFs
- Applications
 - OPAQUE
- Classical construction
- OPRFs from group actions
- SIDH-based OPRF
- Cryptanalytic results
 - Polytime and subexponential attacks on SIDH-based version
 - Requirement for trusted setup

Oblivious Pseudorandom Function (OPRF)

An OPRF is a two-party protocol to evaluate a PRF f(k, m) where:

- The client learns f(k, m), one evaluation of a PRF on a chosen input
- The server learns nothing about m

Oblivious Pseudorandom Function (OPRF)

An OPRF is a two-party protocol to evaluate a PRF f(k, m) where:

- The client learns f(k, m), one evaluation of a PRF on a chosen input
- The server learns nothing about m

An OPRF is called *verifable*, if the server proves to the client that output was computed using the key k Use passwords that never leave your device

How to check a password that you have never seen? Registration Phase:

Use passwords that never leave your device

How to check a password that you have never seen?

Login Phase:

Classical Construction

Parameters: group \mathbb{G} of order q, hash functions H_1 , H_2 onto \mathbb{G} and $\{0,1\}^{\ell}$ resp.

Classical Construction

Parameters: group \mathbb{G} of order q, hash functions H_1 , H_2 onto \mathbb{G} and $\{0,1\}^{\ell}$ resp.

Post-quantum OPRF:

- Construction from lattices [ADDS19]
- Construction from isogenies [BKW20]

Definition

Let S be a set, $s_0 \in S$ and G be a finite abelian group acting on S free and transitively. The Naor-Reingold PRF with key space $\mathcal{K} = G^{n+1}$ and input space $\mathcal{M} = \{0, 1\}^n$ is

$$F_{\mathsf{NR}}((k_0,k_1,\ldots,k_n),(m_1,\ldots,m_n)) = (k_0k_1^{m_1}\cdots k_n^{m_n})\cdot s_0$$

security of PRF relies on group-action DDH assumption

Definition

Let $Ell_p(\mathcal{O})$ be the set of supersingular curves over \mathbb{F}_p with endomorphism ring \mathcal{O} , $E_0 \in Ell_p(\mathcal{O})$ and $Cl(\mathcal{O})$ the class group acting freely and transitively on $Ell_p(\mathcal{O})$. The Naor-Reingold PRF with key space $\mathcal{K} = Cl(\mathcal{O})^{n+1}$ and input space $\mathcal{M} = \{0, 1\}^n$ is

 $F_{NR}(([\mathfrak{a}_0], [\mathfrak{a}_1], \dots, [\mathfrak{a}_n]), (m_1, \dots, m_n)) = ([\mathfrak{a}_0][\mathfrak{a}_1]^{m_1} \cdots [\mathfrak{a}_n]^{m_n}) \cdot E_0$

Naor-Reingold OPRF from group actions [BKW20] contd.

 $F_{\mathsf{NR}}\big((k_0,k_1,\ldots,k_n),(m_1,\ldots,m_n)\big)=(k_0k_1^{m_1}\cdots k_n^{m_n})\cdot s_0$

Naor-Reingold OPRF from group actions [BKW20] contd.

$$F_{NR}((k_{0}, k_{1}, \dots, k_{n}), (m_{1}, \dots, m_{n})) = (k_{0}k_{1}^{m_{1}} \cdots k_{n}^{m_{n}}) \cdot s_{0}$$
Client
$$(m_{1}, \dots, m_{n} \in \{0, 1\}^{n})$$

$$r_{i} \leftarrow R \quad G, i = 1, \dots, n$$

$$OT:$$

$$(k_{0}, k_{1}, \dots, k_{n}) \in G^{n+1})$$
Store output as b_{i}

$$s' \leftarrow (k_{0} \prod_{i} r_{i}^{-1}) \cdot s_{0}$$
Compute $(\prod_{i} b_{i}) \cdot s'$

$$= (k_{0}k_{1}^{m_{1}} \cdots k_{n}^{m_{n}}) \cdot s_{0}$$

Client Server

 E_{Mk}

 E_{Mk}

↓ E_{Mrk}

Pseudorandomness of an Oblivious PRF

Pseudorandomness of an Oblivious PRF

Pseudorandomness of an Oblivious PRF

- An attacker should not be able to evaluate the OPRF without the server's help even after multiple queries
- Pseudorandomness of [BKW20] is based on a new 'auxiliary one-more' assumption

Find E_k and $\langle \phi_k(M) \rangle$ for some point $M \in E_0[2^n]$

- Find E_k and $\langle \phi_k(M) \rangle$ for some point $M \in E_0[2^n]$
- Combine multiple points to obtain $\phi_k(E_0[2^n])$ up to scalar multiplication

- Find E_k and $\langle \phi_k(M) \rangle$ for some point $M \in E_0[2^n]$
- Combine multiple points to obtain \$\phi_k(E_0[2^n])\$ up to scalar multiplication
- Given point $P \in E_0[2^n]$, compute $\langle \phi_k(P) \rangle$ and thus $E_k / \langle \phi_k(P) \rangle = E_{Pk}$

 E_0

A Polytime Attack

Combining the points

Given *M* on $E_0[2^n]$, we can recover $\langle \phi_k(M) \rangle$

A Polytime Attack

Combining the points

Given *M* on $E_0[2^n]$, we can recover $\langle \phi_k(M) \rangle$ \Rightarrow can recover $[\alpha]\phi_k(M)$ for odd α

A Polytime Attack Combining the points

Given *M* on $E_0[2^n]$, we can recover $\langle \phi_k(M) \rangle$ \Rightarrow can recover $[\alpha]\phi_k(M)$ for odd α

For basis $E_0[2^n] = \langle M, N \rangle$, we recover

$$egin{aligned} &M':=[lpha]\phi_k(M)\ &N':=[eta]\phi_k(N)\ &R':=[\gamma]\phi_k(M+N) \end{aligned}$$

A Polytime Attack Combining the points

Given *M* on $E_0[2^n]$, we can recover $\langle \phi_k(M) \rangle$ \Rightarrow can recover $[\alpha]\phi_k(M)$ for odd α

For basis $E_0[2^n] = \langle M, N \rangle$, we recover

$$\left.\begin{array}{l}
M' := [\alpha]\phi_k(M) \\
N' := [\beta]\phi_k(N) \\
R' := [\gamma]\phi_k(M+N) = [a]M' + [b]N'
\end{array}\right\} \Rightarrow \frac{\alpha}{\beta} = \frac{b}{a}$$

A Polytime Attack Combining the points

Given *M* on $E_0[2^n]$, we can recover $\langle \phi_k(M) \rangle$ \Rightarrow can recover $[\alpha]\phi_k(M)$ for odd α

For basis $E_0[2^n] = \langle M, N \rangle$, we recover

$$\left.\begin{array}{l}
M' := [\alpha]\phi_k(M) \\
N' := [\beta]\phi_k(N) \\
R' := [\gamma]\phi_k(M+N) = [a]M' + [b]N'
\end{array}\right\} \Rightarrow \frac{\alpha}{\beta} = \frac{b}{a}$$

Breaking Pseudorandomness

Given any $P = [x]M + [y]N \in E_0[2^n]$, we can compute

$$\langle \phi_k(P) \rangle = \langle [x]M' + [y] \left[rac{lpha}{eta}
ight] N'
angle$$

A Polytime Attack Results

- $O(\lambda)$ queries recover E_K and $\langle \phi_k(M) \rangle$ for any M in $E_0[2^n]$
- With three distinct subgroups, we can compute \langle \phi_k(P) \rangle for any P without further interactions
- This allows to compute E_K/(\u03c6\u03c6 k(P)) and breaks the 'one-more' assumption

- $O(\lambda)$ queries recover E_K and $\langle \phi_k(M) \rangle$ for any M in $E_0[2^n]$
- With three distinct subgroups, we can compute \$\langle \phi_k(P) \rangle\$ for any \$P\$ without further interactions
- This allows to compute E_K/⟨φ_k(P)⟩ and breaks the 'one-more' assumption

But

It can be checked that query points have full order

E₀ E_M

A Subexponential Attack

Using full-order queries

 E_0

E_{Mk}

A Subexponential Attack

 E_0

Using full-order queries

 $E_0 \qquad \bullet \longleftarrow \underbrace{E_M}_{\bullet}$

 E_0

 $\bullet \xleftarrow{} E_M$ $\bullet \xleftarrow{} E_{Mk}$

 E_0

 $\bullet \longleftrightarrow E_{M}$ $\bullet \rightarrow \bullet \ri$

 E_0

A Subexponential Attack Building a tree

- Queries/complexity trade-offs (O(2^{λ/3}) complexity with 2 queries)
- Highly parallelizable

The full attack:

- Use the binary tree to recover subgroup generating $E_k \rightarrow E_{Mk}$
- Second part of the attack same as polytime attack
- Subexponential complexity for balanced trade-offs

The full attack:

- Use the binary tree to recover subgroup generating $E_k o E_{Mk}$
- Second part of the attack same as polytime attack
- Subexponential complexity for balanced trade-offs

Countermeasures:

- No obvious countermeasures
- Increase the parameter size? \Rightarrow very large degrees
- New efficient solutions?

Parameters				MITM		Time
log p	λ	п	q	Distance	Memory (kB)	
112	8	20	3	8	3.5	15s
216	16	40	6	10	13.8	3.53 m
413	32	80	8	16	211.4	22.85 m
859	67	169	11	26	14,073	1.89 d
1,614	128	320	18	40	3,384,803	5.54 y

Available at https://github.com/isogenists/isogeny-OPRF

Who chooses E_0 ?

- The client
- A third-party
- The server
- Known curve $(j(E_0) = 1728)$
- Trusted setup

Who chooses E_0 ?

- The client
- $\left\{ \begin{array}{c} can backdoor E_0 \\ can backdoor \end{array} \right\}$
- A third-party
- The server
- Known curve $(j(E_0) = 1728)$
- Trusted setup

Who chooses E_0 ?

- The client $\left\{ \begin{array}{c} \text{Can backdoor } E_0 \end{array} \right\}$ can backdoor E_0 allowing to recover k
- A third-party
- The server
- Known curve $(j(E_0) = 1728)$
- Trusted setup

breaks Collision assumption

Who chooses E_0 ?

- The client $\left\{ \begin{array}{c} \text{Can backdoor } E_0 \end{array} \right\}$ can backdoor E_0 allowing to recover k
- A third-party
- The server
- Known curve $(j(E_0) = 1728)$
- Trusted setup

breaks Collision assumption

- Two attacks on pseudorandomness of SIDH-based OPRF by Boneh, Kogan and Woo
- A proof of concept implementation of the attack
- Need for a trusted setup
- Can we build better post-quantum OPRFs?

Paper available at https://ia.cr/2021/706