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Oblivious Pseudorandom Function (OPRF)

An OPREF is a two-party protocol to evaluate a PRF f(k, m) where:
m The client learns f(k, m), one evaluation of a PRF on a chosen input

m The server learns nothing about m
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m An OPRF is called verifable, if the server proves to the client that output was
computed using the key k




OPAQUE: OPRF + PAKE

m Use passwords that never leave your device

How to check a password that you have never seen?

Registration Phase:
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OPAQUE: OPRF + PAKE

m Use passwords that never leave your device

How to check a password that you have never seen?

Login Phase:
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Authenticated Key Exchange
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m Generate cryptographically ‘blinded’ tokens that can be signed by server after
client authenticates themselves (e.g. CAPTCHA solution)

m Security properties:

Unlinkability
Unforgeability

m Construction:

m VOPREF for issuance of tokens during blind signing phase
m Verification of anonymous tokens during redemption phase



Existing Constructions

Parameters: group G of order g, hash functions Hy, Ho onto G and {0, 1}¢ resp.

Client C(m) Server S(k)

Pick r <—r Zg
Set a < (H1(m))" —

If a€ G, set b+ a¥

b
PR

If b€ G, set v« b/"
Output Ha(m, v)
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Parameters: group G of order g, hash functions Hy, Ho onto G and {0, 1}¢ resp.

Client C(m) Server S(k)

Pick r <—r Zg
Set a < (H1(m))" —

If a€ G, set b+ a¥

b
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If be G, set v« b'/r
Output Ha(m, v)
Post-quantum OPRF:
m Construction from lattices [ADDS19]
m Construction from isogenies [BKW20]



Isogenies

Let Eg, Eq be elliptic curves defined over a field FP

m An Isogeny is non-constant rational map ¢ : Eg — E;
that is also a group homomorphism

m The kernel of an isogeny determines the image curve
up to isomorphism (Eg/ ker(y) := E7)

m Two curves Epy, E; are isomorphic if and only if they

have the same j-invariant Figure: Image by D. Charles

m (Separable) isogenies correspond to subgroups of Egy
(order of subgroup equals degree of isogeny)



SIDH [JD11]

m Fix a prime p such that p = Ny N> — 1, EO/IF?J and bases (Pa, Qa) = Eo[Ni],
(Pg, @p) = Eo[No]

E4 = E/{A) Ep = E/(B)
0a(Pp),pa(Qp) ©5(Pa), p(Q4)
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SIDH [JD11]

m Fix a prime p such that p = Ny N> — 1, EO/IF?J and bases (Pa, Qa) = Eo[Ni],
(Pg, @p) = Eo[No]

Alice's secret is

A:=Pp+ [SkA]QA
Bob's secret is
B = PB + [SkB]QB

n

B, 7E/

0a(Pp), pa( ‘P” 1)
m Alice sends Ep, ¢a(Pg), ¢a(QB)
m Bob sends Eg, ¢g(Pa), ¢8(Qa)

Eap = E/(A, B)
m The shared secret is the j-invariant of Eapg
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Oblivious Pseudorandom Functions from Isogenies [BKW20]
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m An attacker should not be able to
evaluate the OPRF without the
server’'s help even after multiple
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Pseudorandomness of an Oblivious PRF

m An attacker should not be able to % Emr
evaluate the OPRF without the Eo |
server’'s help even after multiple
queries

m Pseudorandomness of [BKW20] is

based on a new ‘auxiliary one-more’ Em, k
assumption
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Attacking the ‘one-more’ Assumption

EO Pm EM
o M Eumr

Enmtric
m Find Ex and (¢x(M)) for some point M € Ey[2"]

= Combine multiple points to obtain ¢x(Eg[2"]) up to scalar multiplication
m Given point P € Ey[2"], compute (¢x(P)) and finally Ex/{(¢x(P)) = Epxk
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A Polytime Attack
Combining the points

Given M on Eg[2"], we can recover (px(M)) = we can recover [a]px(M)

We query on M, N, M 4+ N and obtain

M' = [a]¢k(M)
N' = [Blgx (N) =
R'=[¢x(M + N) = [a]M' + [b]N'
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Breaking the assumption
Given any P = [x]M + [y]N, we can compute (¢x(P)) = ([x]M' + [y]5N')



A Polytime Attack

Results

m O(A) queries recover (¢x(M)) for any M in Ep[2"]

m With three subgroups, we can compute (¢x(P)) for any P
without further interactions

m This breaks the ‘one-more’ assumption



A Polytime Attack

Results

m O(A) queries recover (¢x(M)) for any M in Ep[2"]

m With three subgroups, we can compute (¢x(P)) for any P
without further interactions

m This breaks the ‘one-more’ assumption

But
m It is easy to check that query points have full order
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A Subexponential Attack
Building a tree
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A Subexponential Attack
Building a tree

= Queries/complexity trade-offs
(0(2*/3) complexity with 2 queries)
m Highly parallelizable
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A Subexponential Attack

The full attack:
m Use the binary tree to recover points on Ej
m Second part of the attack same as polytime attack

m Subexponential complexity for balanced trade-offs



A Subexponential Attack

The full attack:
m Use the binary tree to recover points on Ej
m Second part of the attack same as polytime attack

m Subexponential complexity for balanced trade-offs

Countermeasures:
m No obvious countermeasures
m Increase the parameter size? = very large degrees

m New efficient solutions?



Implementation Results

Parameters MITM Running Time
logp A n g | Distance Memory (kB) (s)
112 8 20 3 8 3.5 15
216 16 40 6 10 13.8 212 (3.53 m)
413 32 8 8 16 211.4 1,371 (22.85 m)
859 67 169 11 26 14,073 163,869 (1.89 d)
1,614 128 320 18 40 3,384,803 174,709,440 (5.54 y)

Available at https://github.com/isogenists/isogeny-0PRF


https://github.com/isogenists/isogeny-OPRF
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Conclusion

m Two attacks on ‘one-more’ assumption and the pseudorandomness of Boneh et
al.’s OPRF

m A proof of concept implementation of the attack
m Need for a trusted setup

m CSIDH-based OPRF construction is not affected by the attack

Paper available at https://ia.cr/2021/706


https://ia.cr/2021/706
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