Cryptanalysis of an Oblivious PRF

from Supersingular Isogenies

Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit and Antonio Sanso

ROYAL

HOLLOWAY
UNIVERSITY
OF LONDON

March 2022
ISG Seminar

m Definition of (V)OPRFs

Applications

= OPAQUE
m PrivacyPass

Isogenies and SIDH

m OPRF from isogenies

Cryptanalytic results

m Polytime and subexponential attacks
m Requirement for trusted setup

Oblivious Pseudorandom Function (OPRF)

An OPREF is a two-party protocol to evaluate a PRF f(k, m) where:
m The client learns f(k, m), one evaluation of a PRF on a chosen input

m The server learns nothing about m

AN
~

Oblivious Pseudorandom Function (OPRF)

An OPREF is a two-party protocol to evaluate a PRF f(k, m) where:

m The client learns f(k, m), one evaluation of a PRF on a chosen input

m The server learns nothing about m
P commit(k)

f(k, m) 1

AN

~

A

m An OPRF is called verifable, if the server proves to the client that output was
computed using the key k

OPAQUE: OPRF + PAKE

m Use passwords that never leave your device

How to check a password that you have never seen?

Registration Phase:

N

SN hassword

G' OPREF(server_key, password)

/(Q\\

M\ redentials

~

OPAQUE: OPRF + PAKE

m Use passwords that never leave your device

How to check a password that you have never seen?

Login Phase:

=\
=

%

password

q' OPREF(server_key, password)

M
credentials

A

Authenticated Key Exchange

A

m Generate cryptographically ‘blinded’ tokens that can be signed by server after
client authenticates themselves (e.g. CAPTCHA solution)

m Security properties:

Unlinkability
Unforgeability

m Construction:

m VOPREF for issuance of tokens during blind signing phase
m Verification of anonymous tokens during redemption phase

Existing Constructions

Parameters: group G of order g, hash functions Hy, Ho onto G and {0, 1}¢ resp.

Client C(m) Server S(k)

Pick r <—r Zg
Set a < (H1(m))" —

If a€ G, set b+ a¥

b
PR

If b€ G, set v« b/"
Output Ha(m, v)

Existing Constructions

Parameters: group G of order g, hash functions Hy, Ho onto G and {0, 1}¢ resp.

Client C(m) Server S(k)

Pick r <—r Zg
Set a < (H1(m))" —

If a€ G, set b+ a¥

b
PR

If be G, set v« b'/r
Output Ha(m, v)
Post-quantum OPRF:
m Construction from lattices [ADDS19]
m Construction from isogenies [BKW20]

Isogenies

Let Eg, Eq be elliptic curves defined over a field FP

m An Isogeny is non-constant rational map ¢ : Eg — E;
that is also a group homomorphism

m The kernel of an isogeny determines the image curve
up to isomorphism (Eg/ ker(y) := E7)

m Two curves Epy, E; are isomorphic if and only if they

have the same j-invariant Figure: Image by D. Charles

m (Separable) isogenies correspond to subgroups of Egy
(order of subgroup equals degree of isogeny)

SIDH [JD11]

m Fix a prime p such that p = Ny N> — 1, EO/IF?J and bases (Pa, Qa) = Eo[Ni],
(Pg, @p) = Eo[No]

E4 = E/{A) Ep = E/(B)
0a(Pp),pa(Qp) ©5(Pa), p(Q4)

SIDH [JD11]

m Fix a prime p such that p = Ny N> — 1, EO/IF?J and bases (Pa, Qa) = Eo[Ni],
(Pg, @p) = Eo[No]

m Alice's secret is
A:=Pp+ [SkA]QA
m Bob's secret is ¢4 o5

B=P k
B + [sks] Qs Ea = E/(A) Ep := E/(B)

0a(Pp),pa(Qp) ©5(Pa), pp(Q4)

SIDH [JD11]

m Fix a prime p such that p = Ny N> — 1, EO/IF?J and bases (Pa, Qa) = Eo[Ni],
(Pg, @p) = Eo[No]

m Alice's secret is

A:=Pp+ [SkA]QA
m Bob's secret is
B = PB + [SkB]QB

Ey 7E/
04(Pg),

m Alice sends Ex, ¢a(Pg), ¢a(QB) . W ’
m Bob sends Eg, ¢g(Pa), ¢8(Qa)

Eup = E/(A, B)

SIDH [JD11]

m Fix a prime p such that p = Ny N> — 1, EO/IF?J and bases (Pa, Qa) = Eo[Ni],
(Pg, @p) = Eo[No]

Alice's secret is

A:=Pp+ [SkA]QA
Bob's secret is
B = PB + [SkB]QB

n

B, 7E/

0a(Pp), pa(‘P” 1)
m Alice sends Ep, ¢a(Pg), ¢a(QB)
m Bob sends Eg, ¢g(Pa), ¢8(Qa)

Eap = E/(A, B)
m The shared secret is the j-invariant of Eapg

Oblivious Pseudorandom Functions from Isogenies [BKW20]

D
EO m EM

Client
Server

Oblivious Pseudorandom Functions from Isogenies [BKW20]

D
EO m EM

Client
Server

Oblivious Pseudorandom Functions from Isogenies [BKW20]

D
EO m EM

Client
Server

Oblivious Pseudorandom Functions from Isogenies [BKW20]

D
EO m EM

Client
Server

Eniri

Oblivious Pseudorandom Functions from Isogenies [BKW20]

D
EO m EM

Client
Server

Oblivious Pseudorandom Functions from Isogenies [BKW20]

EO Pm EM
Or

. EMr
Client
Server

Ex Enk bk

X
Emrk

f(kv m) - H(maj(El\/lk)v pk)

Pseudorandomness of an Oblivious PRF

m An attacker should not be able to
evaluate the OPRF without the
server’'s help even after multiple
queries

Pseudorandomness of an Oblivious PRF

m An attacker should not be able to

evaluate the OPRF without the Eo Ew,
server’'s help even after multiple
queries

Eny i

Pseudorandomness of an Oblivious PRF

m An attacker should not be able to /
evaluate the OPRF without the |
server’'s help even after multiple
queries

En,k

Eny i

Pseudorandomness of an Oblivious PRF

m An attacker should not be able to % Emy
evaluate the OPRF without the Eo | E
server’'s help even after multiple
queries

Em, k Epnpr i

Eny i

Pseudorandomness of an Oblivious PRF

m An attacker should not be able to % Emr
evaluate the OPRF without the Eo |
server’'s help even after multiple
queries

m Pseudorandomness of [BKW20] is

based on a new ‘auxiliary one-more’ Em, k
assumption

Epnpr i

Eny i

Attacking the ‘one-more’ Assumption

Eo En
\
Ex Enix i
r Emrk

m Find Ex and (¢« (M)) for some point M € Ey[2"]

Attacking the ‘one-more’ Assumption

Eo En
\
Ex Enix i
r Emrk

m Find Ex and (¢x(M)) for some point M € Ey[2"]
= Combine multiple points to obtain ¢x(Eg[2"]) up to scalar multiplication

Attacking the ‘one-more’ Assumption

EO Pm EM
o M Eumr

Enmtric
m Find Ex and (¢x(M)) for some point M € Ey[2"]

= Combine multiple points to obtain ¢x(Eg[2"]) up to scalar multiplication
m Given point P € Ey[2"], compute (¢x(P)) and finally Ex/{(¢x(P)) = Epxk

A Polytime Attack
Recovering points on Ej

Eo

A Polytime Attack

Recovering points on Ej

EO M

A Polytime Attack
Recovering points on Ej

EO EM
° Eni
RIM M

A Polytime Attack
Recovering points on Ej

EO o EM

° ° Eni
[4M [2M M

A Polytime Attack
Recovering points on Ej

Ey ° ° Enm

° ° Eni
[4M [2M M

A Polytime Attack
Recovering points on Ej

Ey ° ° Enm

° ... ° ° Eni
[27—1Mm [4M [2M M

A Polytime Attack
Recovering points on Ej

Eo ° ° ° Eym
E, ° ... ° ° Eni
[2"= 1M [4M [2IM M

A Polytime Attack
Recovering points on Ej

Epn —e— e Epy
[2"= 1M [4M [2IM M

A Polytime Attack
Recovering points on Ej

bk ker o = (o (M))

Epn —e— e Epy
[2"= 1M [4M [2IM M

A Polytime Attack
Combining the points

Given M on Eg[2"], we can recover (¢x(M))

A Polytime Attack
Combining the points

Given M on Eg[2"], we can recover (px(M)) = we can recover [a]px(M)

A Polytime Attack
Combining the points

Given M on Eg[2"], we can recover (px(M)) = we can recover [a]px(M)

We query on M, N, M 4+ N and obtain

M =[]k (M)
N" = [Blok(N)
R' = [Y]¢k(M + N) = [a]M' + [b]N'

A Polytime Attack
Combining the points

Given M on Eg[2"], we can recover (px(M)) = we can recover [a]px(M)
We query on M, N, M 4+ N and obtain
M' = [a]¢k(M)

=

N" = [Blok(N)
R' = [Y]¢k(M + N) = [a]M' + [b]N'

A Polytime Attack
Combining the points

Given M on Eg[2"], we can recover (px(M)) = we can recover [a]px(M)

We query on M, N, M 4+ N and obtain

M' = [a]¢k(M)
N' = [Blgx (N) =
R'=[¢x(M + N) = [a]M' + [b]N'

™| e
v T

Breaking the assumption
Given any P = [x]M + [y]N, we can compute (¢x(P)) = ([x]M' + [y]5N')

A Polytime Attack

Results

m O(A) queries recover (¢x(M)) for any M in Ep[2"]

m With three subgroups, we can compute (¢x(P)) for any P
without further interactions

m This breaks the ‘one-more’ assumption

A Polytime Attack

Results

m O(A) queries recover (¢x(M)) for any M in Ep[2"]

m With three subgroups, we can compute (¢x(P)) for any P
without further interactions

m This breaks the ‘one-more’ assumption

But
m It is easy to check that query points have full order

A Subexponential Attack

Using full-order queries

A Subexponential Attack

Using full-order queries

Eo 0<—EM

A Subexponential Attack

Using full-order queries

A Subexponential Attack
Using full-order queries

Eo 0<—EM

A Subexponential Attack

Using full-order queries

.HEMk

A Subexponential Attack

Using full-order queries

.HEMk

A Subexponential Attack

Using full-order queries

A Subexponential Attack

Using full-order queries

A Subexponential Attack
Using full-order queries

Eo O(*O%EM

A Subexponential Attack

Using full-order queries

Eo O(*O%EM
\ ~

°

o/'.

\.

Ey e < o< Epp

A Subexponential Attack
Building a tree

\
\
\
e+— M
!
/
|

/ AN RN

k/(M3) Ei/(Maa_s) Ei/(Mas—3) Ei/{Mas—2 Ey/(Maa_1)

A Subexponential Attack
Building a tree

= Queries/complexity trade-offs
(0(2*/3) complexity with 2 queries)
m Highly parallelizable

\
\
\
e+—m
!
/
/

<N N Y

«/{Ms) E/{Maa_4) Ex/{Maa_3) Ex/{Mpa_2) Ex/{M2a_1)

A Subexponential Attack

The full attack:
m Use the binary tree to recover points on Ej
m Second part of the attack same as polytime attack

m Subexponential complexity for balanced trade-offs

A Subexponential Attack

The full attack:
m Use the binary tree to recover points on Ej
m Second part of the attack same as polytime attack

m Subexponential complexity for balanced trade-offs

Countermeasures:
m No obvious countermeasures
m Increase the parameter size? = very large degrees

m New efficient solutions?

Implementation Results

Parameters MITM Running Time
logp A n g | Distance Memory (kB) (s)
112 8 20 3 8 3.5 15
216 16 40 6 10 13.8 212 (3.53 m)
413 32 8 8 16 211.4 1,371 (22.85 m)
859 67 169 11 26 14,073 163,869 (1.89 d)
1,614 128 320 18 40 3,384,803 174,709,440 (5.54 y)

Available at https://github.com/isogenists/isogeny-0PRF

https://github.com/isogenists/isogeny-OPRF

The Starting Curve

Who chooses Egy?
m The client
m A third-party
m The server
m Known curve (j(Ep) = 1728)
m Trusted setup

The Starting Curve

Who chooses Egy?
m The client
. } can backdoor Ey = key-recovery attack on the server
m A third-party
m The server
m Known curve (j(Ep) = 1728)

m Trusted setup

The Starting Curve

Who chooses Egy?
m The client
. } can backdoor Eg = key-recovery attack on the server
m A third-party
m The server
m Known curve (j(Ep) = 1728)

m Trusted setup

} breaks the Supersingular Isogeny Collision assumption

The Starting Curve

Who chooses Egy?
m The client
. } can backdoor Eg = key-recovery attack on the server
m A third-party
m The server
m Known curve (j(Ep) = 1728)

m Trusted setup

} breaks the Supersingular Isogeny Collision assumption

Conclusion

m Two attacks on ‘one-more’ assumption and the pseudorandomness of Boneh et
al.’s OPRF

m A proof of concept implementation of the attack
m Need for a trusted setup

m CSIDH-based OPRF construction is not affected by the attack

Paper available at https://ia.cr/2021/706

https://ia.cr/2021/706

References

[BKW20] Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudorandom functions from isogenies.
In Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and
Application of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020,
Proceedings, Part Il, pages 520-550, 2020.

	References

