SCALLOP: a somewhat scalable effective group action from isogenies

Luca De Feo Tako Boris Fouotsa Péter Kutas

Antonin Leroux Simon-Philipp Merz Lorenz Panny

Benjamin Wesolowski

February 2024 Isogeny Club

Cryptographic group actions

Definition

A group action of a group G on a set X is a function

$$\star: G \times X \to X$$

 $e \star x = x$

$$(gh) \star x = g \star (h \star x)$$

Cryptographic group actions

Definition

A group action of a group G on a set X is a function

$$\star: G \times X \to X$$

 $e \star x = x$

$$(gh) \star x = g \star (h \star x)$$

- Vectorization prob.: given $x, y \in X$, find $g \in G$ s.t. $y = g \star x$
- Parallelization prob.: given $x, g \star x, h \star x$, find $(gh) \star x$

Cryptographic group actions

Definition

A group action of a group G on a set X is a function

$$\star: G \times X \to X$$

 $e \star x = x$

$$(gh) \star x = g \star (h \star x)$$

- Vectorization prob.: given $x, y \in X$, find $g \in G$ s.t. $y = g \star x$
- Parallelization prob.: given $x, g \star x, h \star x$, find $(gh) \star x$
- Typically group action-based cryptography has focussed on group actions that are both free and transitive

Definition (EGA)

A group action (G, X, \star) is <u>effective</u>, if there exist efficient (PPT) algorithms for

- membership testing, equality testing, sampling and computing the operation and inversion in G
- membership testing and unique representation in X
- computing $g \star x$ for any $g \in G$ and $x \in X$.

Definition (EGA)

A group action (G, X, \star) is <u>effective</u>, if there exist efficient (PPT) algorithms for

- membership testing, equality testing, sampling and computing the operation and inversion in G
- membership testing and unique representation in X
- computing $g \star x$ for any $g \in G$ and $x \in X$.

CSIDH is not an EGA!

For arbitrary $g \in G$ and $x \in X$, computing $g \star x$ is not efficient!

CSIDH: a restricted effective group action

 CSIDH is a <u>restricted</u> effective group action (REGA), i.e. evaluate group action only on certain (representations of) elements in G CSIDH is a <u>restricted</u> effective group action (REGA), i.e. evaluate group action only on certain (representations of) elements in G

More precisely:

- Fix list of elements l₁,..., l_n spanning G such that l_i ★ E can be efficiently evaluated for every E ∈ X
- Can evaluate ∏_i l^{ei}_i ★ E for E ∈ X efficiently as long as exponents (e₁,..., e_n) ∈ Zⁿ are sufficiently small, i.e. e_i sampled from [-B, B] for some bound B in CSIDH

 CSIDH is a <u>restricted</u> effective group action (REGA), i.e. evaluate group action only on certain (representations of) elements in G

More precisely:

- Fix list of elements l₁,..., l_n spanning G such that l_i ★ E can be efficiently evaluated for every E ∈ X
- Can evaluate ∏_i l^{e_i}_i ★ E for E ∈ X efficiently as long as exponents (e₁,..., e_n) ∈ Zⁿ are sufficiently small, i.e. e_i sampled from [-B, B] for some bound B in CSIDH

So what?

Let (G, X, \star) be an EGA. Zero-knowledge proof of knowledge of secret $s \in G$ corresponding to public key $(E_0, E_1 := s \star E_0) \in X^2$:

Prover commits to $E_c := r \star E_0$ for random $r \in G$

Let (G, X, \star) be an EGA. Zero-knowledge proof of knowledge of secret $s \in G$ corresponding to public key $(E_0, E_1 := s \star E_0) \in X^2$:

- Prover commits to $E_c := r \star E_0$ for random $r \in G$
- Challenger sends bit b to prover who reveals $s^b r^{-1}$

Let (G, X, \star) be an EGA. Zero-knowledge proof of knowledge of secret $s \in G$ corresponding to public key $(E_0, E_1 := s \star E_0) \in X^2$:

- Prover commits to $E_c := r \star E_0$ for random $r \in G$
- Challenger sends bit b to prover who reveals $s^b r^{-1}$
- Challenger checks whether E_b is equal to $s^b r^{-1} \star E_c$

Let (G, X, \star) be an EGA. Zero-knowledge proof of knowledge of secret $s \in G$ corresponding to public key $(E_0, E_1 := s \star E_0) \in X^2$:

- Prover commits to $E_c := r \star E_0$ for random $r \in G$
- Challenger sends bit b to prover who reveals $s^b r^{-1}$
- Challenger checks whether E_b is equal to $s^b r^{-1} \star E_c$

Can turn protocol into (non-interactive) signature scheme with Fiat-Shamir transform.

Let (G, X, \star) be an EGA. Zero-knowledge proof of knowledge of secret $s \in G$ corresponding to public key $(E_0, E_1 := s \star E_0) \in X^2$:

- Prover commits to $E_c := r \star E_0$ for random $r \in G$
- Challenger sends bit b to prover who reveals $s^b r^{-1}$
- Challenger checks whether E_b is equal to $s^b r^{-1} \star E_c$

Can turn protocol into (non-interactive) signature scheme with Fiat-Shamir transform.

- Zero-knowledge proof breaks for REGA, s^br⁻¹ can leak information about s
- Fix: rejection sampling (see SeaSign) ⇒ considerable increase in parameters, much less efficient

For simplicity, assume acting group $G = \langle \mathfrak{l}_1 \rangle$ is cyclic.

For simplicity, assume acting group $G = \langle \mathfrak{l}_1 \rangle$ is cyclic.

Precomputation done once:

- Compute cardinality of acting group |G|
- Compute lattice of relations \mathcal{L} of l_i , i.e. lattice spanned by vectors $(e_1, \ldots, e_n) \in \mathbb{Z}^n$ such that $\prod_i l_i^{e_i}$ acts trivially on X
- Compute reduced basis of *L* which allows to solve CVP instances efficiently

For simplicity, assume acting group $G = \langle \mathfrak{l}_1 \rangle$ is cyclic.

Precomputation done once:

- Compute cardinality of acting group |G|
- Compute lattice of relations \mathcal{L} of l_i , i.e. lattice spanned by vectors $(e_1, \ldots, e_n) \in \mathbb{Z}^n$ such that $\prod_i l_i^{e_i}$ acts trivially on X
- Compute reduced basis of *L* which allows to solve CVP instances efficiently

Online phase to evaluate $l_1^e \star E$ (for all $e \in \mathbb{Z}$):

- Solve (approximate) CVP of (e, 0, ..., 0) in L to find decomposition l^e₁ = ∏_i l^{e_i}_i with small exponents e_i
- Evaluate the restricted group action $\prod_{i} l_{i}^{e_{i}} \star E$

For simplicity, assume acting group $G = \langle \mathfrak{l}_1 \rangle$ is cyclic.

Precomputation done once:

- Compute cardinality of acting group |G|
- Compute lattice of relations \mathcal{L} of \mathfrak{l}_i , i.e. lattice spanned by vectors $(e_1, \ldots, e_n) \in \mathbb{Z}^n$ such that $\prod_i \mathfrak{l}_i^{e_i}$ acts trivially on X
- Compute reduced basis of *L* which allows to solve CVP instances efficiently

Online phase to evaluate $l_1^e \star E$ (for all $e \in \mathbb{Z}$):

- Solve (approximate) CVP of (e, 0, ..., 0) in L to find decomposition l^e₁ = ∏_i l^{e_i}_i with small exponents e_i
- Evaluate the restricted group action $\prod_{i} l_{i}^{e_{i}} \star E$

Caution

Depending on the group G, the precomputation might be computationally infeasible!

CSI-FiSh signature scheme [BKV19]

- Based on group action of CSIDH-512
- Precompute <u>lattice of relations</u> *L* for the generators used in CSIDH-512 using an index-calculus approach
- CSI-FiSh required a world-record class group computation to obtain the lattice for the smallest CSIDH parameters

CSI-FiSh signature scheme [BKV19]

- Based on group action of CSIDH-512
- Precompute <u>lattice of relations</u> *L* for the generators used in CSIDH-512 using an index-calculus approach
- CSI-FiSh required a world-record class group computation to obtain the lattice for the smallest CSIDH parameters

Caution

Computing the structure of the acting group for larger CSIDH parameters is infeasible with currently known algorithms.

Motivation

Introduce group action that solves the scaling issue of CSI-FiSh (to some extent..)

Cryptographic group actions (G, X, \star) for which structure of G can be computed more easily?

Motivation

Introduce group action that solves the scaling issue of CSI-FiSh $(\mbox{to some extent..})$

Cryptographic group actions (G, X, \star) for which structure of G can be computed more easily?

Idea

Can compute class number $|Cl(\mathfrak{O})|$ for \mathfrak{O} of the form $\mathbb{Z} + f\mathfrak{O}_0$ from class number $|Cl(\mathfrak{O}_0)|$ and factorization of f.

Let $f \in \mathbb{Z}$, let \mathfrak{O}_0 be a quadratic order of class number h_0 and discriminant d_0 and let $u_0 := |\mathfrak{O}^{\times}|/2$. For \mathfrak{O} of the form $\mathbb{Z} + f \mathfrak{O}_0$ we have

$$|\mathsf{CI}(\mathfrak{O})| = \left(f - \left(\frac{d_0}{f}\right)\right) \frac{h_0}{u_0}.$$

Let \mathfrak{O} be an imaginary quadratic order, e.g. $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{-p}]$, in an imaginary quadratic field K.

Definition

For any elliptic curve E, a K-orientation is a ring homomorphism $\iota : K \to \operatorname{End}(E) \otimes \mathbb{Q}$. A K-orientation induces a primitive \mathfrak{D} -orientation if $\iota(\mathfrak{D}) = \operatorname{End}(E) \cap \iota(K)$. In that case, the pair (E, ι) is called an \mathfrak{D} -oriented curve.

Let \mathfrak{O} be an imaginary quadratic order, e.g. $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{-p}]$, in an imaginary quadratic field K.

Definition

For any elliptic curve E, a K-orientation is a ring homomorphism $\iota : K \to \operatorname{End}(E) \otimes \mathbb{Q}$. A K-orientation induces a primitive \mathfrak{D} -orientation if $\iota(\mathfrak{D}) = \operatorname{End}(E) \cap \iota(K)$. In that case, the pair (E, ι) is called an \mathfrak{D} -oriented curve.

• ι embeds \mathfrak{O} into $\operatorname{End}(E)$ (and no superorder of \mathfrak{O})

Let \mathfrak{O} be an imaginary quadratic order, e.g. $\mathbb{Z}[i]$, $\mathbb{Z}[\sqrt{-p}]$, in an imaginary quadratic field K.

Definition

For any elliptic curve E, a K-orientation is a ring homomorphism $\iota : K \to \operatorname{End}(E) \otimes \mathbb{Q}$. A K-orientation induces a primitive \mathfrak{D} -orientation if $\iota(\mathfrak{D}) = \operatorname{End}(E) \cap \iota(K)$. In that case, the pair (E, ι) is called an \mathfrak{D} -oriented curve.

- ι embeds \mathfrak{O} into $\operatorname{End}(E)$ (and no superorder of \mathfrak{O})
- We will represent the orientation by a kernel representation of an endomorphism corresponding to a generator of S

■ Let X be the set of primtively D-oriented curves (E, *ι*) up to isomorphism and Galois conjugacy

- Let X be the set of primtively D-oriented curves (E, *ι*) up to isomorphism and Galois conjugacy
- Invertible ideals of D act on X, principal ideals act trivially,
 i.e. get group action by class group Cl(D)

 $\mathsf{Cl}(\mathfrak{O}) \times X \to X$

- Let X be the set of primtively D-oriented curves (E, *ι*) up to isomorphism and Galois conjugacy
- Invertible ideals of D act on X, principal ideals act trivially,
 i.e. get group action by class group Cl(D)

 $\mathsf{Cl}(\mathfrak{O}) \times X \to X$

Group action is free and transitive (see [Onu21])

- Let X be the set of primtively D-oriented curves (E, *ι*) up to isomorphism and Galois conjugacy
- Invertible ideals of D act on X, principal ideals act trivially,
 i.e. get group action by class group Cl(D)

$$\mathsf{Cl}(\mathfrak{O}) \times X \to X$$

- Group action is free and transitive (see [Onu21])
- Example: CSIDH, where $\mathfrak{O} = \mathbb{Z}[\sqrt{-p}]$ with orientations that send $\sqrt{-p}$ to Frobenius endomorphisms

- Computing group action using isogenies:
 - Let $\mathfrak{a} \subset \mathfrak{O}$ ideal, (E, ι_E) an elliptic curve with \mathfrak{O} -orientation
 - Define $E[\mathfrak{a}] = \bigcap_{\alpha \in \mathfrak{a}} \ker \iota_E(\alpha)$ and let

$$\varphi_{\mathfrak{a}}^{E} := E \to E_{\mathfrak{a}} := E/E[\mathfrak{a}] \quad \text{and} \quad \iota_{E_{\mathfrak{a}}}(x) = \frac{1}{n(\mathfrak{a})}\varphi_{\mathfrak{a}}^{E} \circ \iota(x) \circ \hat{\varphi}_{\mathfrak{a}}^{E}$$
$$\bullet \mathfrak{a} \star (E, \iota_{E}) = (E_{\mathfrak{a}}, \iota_{E_{\mathfrak{a}}})$$

How to represent and compute with different orientation effectively?

How to represent and compute with different orientation effectively?

CSIDH:

- Ideal $l_i \subset \mathbb{Z}[\sqrt{-p}]$ acts through an isogeny of degree $\ell_i = n(l_i)$ whose kernel is stabilized by the Frobenius endomorphism π corresponding to $\sqrt{-p}$
- To compute $l_i \star E$ it is sufficient to evaluate the Frobenius endomorphism π on $E[\ell_i]$ and determine its eigenspaces

How to represent and compute with different orientation effectively?

CSIDH General:

- Ideal $l_i \subset \mathbb{Z}[\sqrt{-p}] \mathfrak{O}$ acts through an isogeny of degree $\ell_i = n(l_i)$ whose kernel is stabilized by the Frobenius endomorphism π corresponding to $\sqrt{-p}$ endomorphism ω corresponding to a generator of \mathfrak{O}
- To compute l_i * E it is sufficient to evaluate the Frobenius endomorphism π endomorphism ω on E[l_i] and determine its eigenspaces
- Compute (kernel) representation of endomorphism corresponding to generator of D under orientation

To compute the class group structure, we want:

- $\blacksquare |\mathsf{Cl}(\mathfrak{O}_0)|$
- $\mathfrak{O} = \mathbb{Z} + f \mathfrak{O}_0$ such that factorisation of conductor f known
- |Cl(D)| smooth enough to be able to compute the lattice of relations between ideal actions

To compute the class group structure, we want:

- $|\mathsf{Cl}(\mathfrak{O}_0)|$
- $\mathfrak{O} = \mathbb{Z} + f \mathfrak{O}_0$ such that factorisation of conductor f known
- |Cl(D)| smooth enough to be able to compute the lattice of relations between ideal actions

To represent and compute with oriented curves explicitly, we want:

- A generator α of D of smooth norm L²₁L₂ to efficiently compute and represent corresponding endomorphisms
- A primitively \mathfrak{O} -oriented starting curve

SCALLOP: Precomputation

SCALable isogeny action based on Oriented supersingular curves with Prime conductor

• Take \mathfrak{O}_0 with $|\mathsf{Cl}(\mathfrak{O}_0)| = 1$, we take $\mathfrak{O}_0 = \mathbb{Z}[i]$

SCALable isogeny action based on Oriented supersingular curves with Prime conductor

- Take \mathfrak{O}_0 with $|\mathsf{Cl}(\mathfrak{O}_0)| = 1$, we take $\mathfrak{O}_0 = \mathbb{Z}[i]$
- Generate candidates for 𝔅 with smooth generator until
 conductor f ≈ 2^{2λ} is prime (avoids factoring f)
 class number |Cl(𝔅)| is reasonably smooth

Fix ℓ_1, \ldots, ℓ_n to be the smallest *n* split primes in $\mathbb{Z}[i]$, e.g. (5) = (2+i)(2-i), (13) = (3+2i)(3-2i) etc.

- Fix ℓ_1, \ldots, ℓ_n to be the smallest *n* split primes in $\mathbb{Z}[i]$, e.g. (5) = (2+i)(2-i), (13) = (3+2i)(3-2i) etc.
- Randomly pick signs for ideals (or their squares) above ℓ_i and consider product of generators \Rightarrow smooth norm $L_1^2 L_2$ by construction, i.e. generator corresponds to endomorphism with kernel representation points of order L_1 and $L_1 L_2$

- Fix ℓ_1, \ldots, ℓ_n to be the smallest *n* split primes in $\mathbb{Z}[i]$, e.g. (5) = (2+i)(2-i), (13) = (3+2i)(3-2i) etc.
- Randomly pick signs for ideals (or their squares) above ℓ_i and consider product of generators \Rightarrow smooth norm $L_1^2 L_2$ by construction, i.e. generator corresponds to endomorphism with kernel representation points of order L_1 and $L_1 L_2$
- Test primality of conductor *f* of product, then compute corresponding class number and test smoothness using ECM factoring with abort

- Fix ℓ_1, \ldots, ℓ_n to be the smallest *n* split primes in $\mathbb{Z}[i]$, e.g. (5) = (2+i)(2-i), (13) = (3+2i)(3-2i) etc.
- Randomly pick signs for ideals (or their squares) above ℓ_i and consider product of generators \Rightarrow smooth norm $L_1^2 L_2$ by construction, i.e. generator corresponds to endomorphism with kernel representation points of order L_1 and $L_1 L_2$
- Test primality of conductor *f* of product, then compute corresponding class number and test smoothness using ECM factoring with abort
- Asymptotically, $L_f(1/2)$ search for $L_f(1/2)$ -smooth $|Cl(\mathfrak{O})|$

• Choose prime characteristic p to maximise efficiency of evaluating the group action (and large enough to prevent attacks), i.e. take $p = \prod_i \ell_i \pm 1$

- Choose prime characteristic p to maximise efficiency of evaluating the group action (and large enough to prevent attacks), i.e. take $p = \prod_i \ell_i \pm 1$
- Compute lattice of relations L by solving instances of discrete logarithm problem in Cl(D) (in smooth enough group)
- Compute reduced basis of \mathcal{L} using BKZ as in CSI-FiSh

- Choose prime characteristic p to maximise efficiency of evaluating the group action (and large enough to prevent attacks), i.e. take $p = \prod_i \ell_i \pm 1$
- Compute lattice of relations L by solving instances of discrete logarithm problem in Cl(D) (in smooth enough group)
- Compute reduced basis of \mathcal{L} using BKZ as in CSI-FiSh
- Generate a starting curve with \mathfrak{O} -orientation

Given characteristic p and large prime f with $\mathfrak{O} = \mathbb{Z} + f\mathfrak{O}_0 = \mathbb{Z}[\alpha]$ for some α of norm $L_1^2 L_2$. How to compute effective primitive \mathfrak{O} orientation (E', ι') ?

Push kernel of ω₀ through φ, but deg(f) large prime ⇒ can't use Vélu's formulae

 D₀ special extremal order (see [KLPT14]) ⇒ can find γ ∈ D₀ of norm M efficiently as soon as M > p

- \mathfrak{O}_0 special extremal order (see [KLPT14]) \Rightarrow can find $\gamma \in \mathfrak{O}_0$ of norm M efficiently as soon as M > p
- Let ℓ₀ small prime not dividing L₁L₂ and h ∈ Z such that ℓ^h₀ > p/f and compute γ ∈ D₀ of norm fℓ^h₀ whose ideal corresponds to endomorphism ψ ∘ φ

- \mathfrak{O}_0 special extremal order (see [KLPT14]) \Rightarrow can find $\gamma \in \mathfrak{O}_0$ of norm M efficiently as soon as M > p
- Let ℓ₀ small prime not dividing L₁L₂ and h ∈ Z such that ℓ^h₀ > p/f and compute γ ∈ D₀ of norm fℓ^h₀ whose ideal corresponds to endomorphism ψ ∘ φ
- Push kernel of ω_0 through $\psi \circ \varphi$ (see e.g. [FKMT22]), brute-force ψ and compute ω'

SCALLOP: Online phase

- Generator of smooth norm of O corresponds to endomorphism ω_E
 of smooth degree which we
 represented by kernels of two
 isogenies
- ω_E stabilizes kernels of isogenies used to compute group action

Figure: Isogeny volcano for \mathcal{D} -oriented curves in SCALLOP.

SCALLOP: Online phase

- Generator of smooth norm of O corresponds to endomorphism ω_E
 of smooth degree which we
 represented by kernels of two
 isogenies
- ω_E stabilizes kernels of isogenies used to compute group action
- Evaluate group action by transporting explicit orientation along the group action
- Computing explicit orientation leads to slowdown compared to CSI-FiSh with canonical orientation

Figure: Isogeny volcano for \mathcal{D} -oriented curves in SCALLOP.

Effective Group Actions: CSI-FiSh vs SCALLOP

CSI-FiSh

<u>SCALLOP</u>

•
$$\mathfrak{O} = \mathbb{Z}[\sqrt{-p}]$$

•
$$\mathfrak{O} = \mathbb{Z} + f \mathfrak{O}_0$$
, f prime

Effective Group Actions: CSI-FiSh vs SCALLOP

CSI-FiSh

- $\bullet \mathfrak{O} = \mathbb{Z}[\sqrt{-p}]$
- Expensive class group computation, only feasible for CSIDH-512 parameters

SCALLOP

- $\mathfrak{O} = \mathbb{Z} + f \mathfrak{O}_0$, f prime
- |Cl(D)| free, sieve until smooth enough to compute lattice of relations

Effective Group Actions: CSI-FiSh vs SCALLOP

CSI-FiSh

- $\mathfrak{O} = \mathbb{Z}[\sqrt{-p}]$
- Expensive class group computation, only feasible for CSIDH-512 parameters
- Evaluation of group action with implicit orientation
- Online phase fast

<u>SCALLOP</u>

- $\mathfrak{O} = \mathbb{Z} + f \mathfrak{O}_0$, f prime
- |Cl(D)| free, sieve until smooth enough to compute lattice of relations
- Need to compute explicit orientation along group action
- Online phase slower, but feasible for larger security levels

Proof of concept implementation in C++ available at: https://github.com/isogeny-scallop/scallop

- Concrete instantiation for SCALLOP matching the security levels of CSIDH-512 and CSIDH-1024
- Public keys of size roughly 1600bits for SCALLOP-512 and 2300bits for SCALLOP-1024

Proof of concept implementation in C++ available at: https://github.com/isogeny-scallop/scallop

- Concrete instantiation for SCALLOP matching the security levels of CSIDH-512 and CSIDH-1024
- Public keys of size roughly 1600bits for SCALLOP-512 and 2300bits for SCALLOP-1024
- Evaluation of the group action takes about 35 seconds for the smaller and 12.5 minutes for the larger parameter set
- Implementation shows feasibility, but further work needed to make the group action practical

 Provide framework to evaluate a new family of group actions on oriented elliptic curves via isogenies

- Provide framework to evaluate a new family of group actions on oriented elliptic curves via isogenies
- Concrete instantiations of class group action using action of class group of imaginary quadratic order with large prime conductor *f* inside an imaginary quadratic field of small discriminant (SCALLOP)
- This instantiates effective group actions for security levels previously out of reach

- Provide framework to evaluate a new family of group actions on oriented elliptic curves via isogenies
- Concrete instantiations of class group action using action of class group of imaginary quadratic order with large prime conductor *f* inside an imaginary quadratic field of small discriminant (SCALLOP)
- This instantiates effective group actions for security levels previously out of reach
- Can build schemes that require to uniquely represent and efficiently act by <u>arbitrary</u> group elements for larger security levels than with CSIDH-512 group action

Questions

Open

- How to make group action evaluation faster?
- How to resolve the scaling issues of SCALLOP?

Questions

Open

- How to make group action evaluation faster?
- How to resolve the scaling issues of SCALLOP?

Thank you!

More details: ia.cr/2023/058

Questions

Open

- How to make group action evaluation faster?
- How to resolve the scaling issues of SCALLOP?

Thank you!

More details: ia.cr/2023/058

References

- [BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: efficient isogeny based signatures through class group computations. In International Conference on the Theory and Application of Cryptology and Information Security, pages 227–247. Springer, 2019.
- [FFK⁺23] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: scaling the CSI-FiSh. In <u>IACR International Conference on</u> <u>Public-Key Cryptography</u>, pages 345–375. Springer, 2023.
- [FKMT22] Tako Boris Fouotsa, Péter Kutas, Simon-Philipp Merz, and Yan Bo Ti. On the isogeny problem with torsion point information. In <u>IACR International</u> Conference on Public-Key Cryptography, pages 142–161. Springer, 2022.
- [KLPT14] David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre Tignol. On the quaternion *l*-isogeny path problem. <u>LMS Journal of Computation and</u> Mathematics, 17(A):418–432, 2014.
 - [Onu21] Hiroshi Onuki. On oriented supersingular elliptic curves. <u>Finite Fields and</u> <u>Their Applications</u>, 69:101777, 2021.