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Cryptographic group actions

Definition

A group action of a group G on a set X is a function

⋆ : G × X → X
e ⋆ x = x

(gh) ⋆ x = g ⋆ (h ⋆ x)

Vectorization prob.: given x , y ∈ X , find g ∈ G s.t. y = g ⋆ x

Parallelization prob.: given x , g ⋆ x , h ⋆ x , find (gh) ⋆ x

Typically group action-based cryptography has focussed on
group actions that are both free and transitive
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EGA: effective group action

Definition (EGA)

A group action (G ,X , ⋆) is effective, if there exist efficient (PPT)
algorithms for

membership testing, equality testing, sampling and computing
the operation and inversion in G

membership testing and unique representation in X

computing g ⋆ x for any g ∈ G and x ∈ X .

CSIDH is not an EGA!

For arbitrary g ∈ G and x ∈ X , computing g ⋆ x is not efficient!
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CSIDH: a restricted effective group action

CSIDH is a restricted effective group action (REGA), i.e.
evaluate group action only on certain (representations of)
elements in G

More precisely:

Fix list of elements l1, . . . , ln spanning G such that li ⋆ E can
be efficiently evaluated for every E ∈ X

Can evaluate
∏

i l
ei
i ⋆ E for E ∈ X efficiently as long as

exponents (e1, . . . , en) ∈ Zn are sufficiently small, i.e. ei
sampled from [−B,B] for some bound B in CSIDH

So what?
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EGA vs REGA: Identification protocols and Fiat-Shamir
signatures

Let (G ,X , ⋆) be an EGA. Zero-knowledge proof of knowledge of
secret s ∈ G corresponding to public key (E0,E1 := s ⋆ E0) ∈ X 2:

Prover commits to Ec := r ⋆ E0 for random r ∈ G

Challenger sends bit b to prover who reveals sbr−1

Challenger checks whether Eb is equal to sbr−1 ⋆ Ec

Can turn protocol into (non-interactive) signature scheme with
Fiat-Shamir transform.

Zero-knowledge proof breaks for REGA, sbr−1 can leak
information about s

Fix: rejection sampling (see SeaSign) ⇒ considerable increase
in parameters, much less efficient
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General strategy: REGA to EGA

For simplicity, assume acting group G = ⟨l1⟩ is cyclic.

Precomputation done once:

Compute cardinality of acting group |G |
Compute lattice of relations L of li , i.e. lattice spanned by
vectors (e1, . . . , en) ∈ Zn such that

∏
i l

ei
i acts trivially on X

Compute reduced basis of L which allows to solve CVP
instances efficiently

Online phase to evaluate le1 ⋆ E (for all e ∈ Z):
Solve (approximate) CVP of (e, 0, . . . , 0) in L to find
decomposition le1 =

∏
i l

ei
i with small exponents ei

Evaluate the restricted group action
∏

i l
ei
i ⋆ E

Caution

Depending on the group G , the precomputation might be
computationally infeasible!
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CSI-FiSh signature scheme [BKV19]

Based on group action of CSIDH-512

Precompute lattice of relations L for the generators used in
CSIDH-512 using an index-calculus approach

CSI-FiSh required a world-record class group computation to
obtain the lattice for the smallest CSIDH parameters

Caution

Computing the structure of the acting group for larger CSIDH
parameters is infeasible with currently known algorithms.
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Idea

Motivation

Introduce group action that solves the scaling issue of CSI-FiSh
(to some extent..)

Cryptographic group actions (G ,X , ⋆) for which structure of G can
be computed more easily?

Idea

Can compute class number |Cl(O)| for O of the form Z+ fO0

from class number |Cl(O0)| and factorization of f .

Let f ∈ Z, let O0 be a quadratic order of class number h0 and
discriminant d0 and let u0 := |O×|/2.
For O of the form Z+ fO0 we have

|Cl(O)| =
(
f −

(
d0
f

))
h0
u0
.
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Oriented elliptic curves

Let O be an imaginary quadratic order, e.g. Z[i ], Z[
√
−p], in an

imaginary quadratic field K .

Definition

For any elliptic curve E , a K -orientation is a ring homomorphism
ι : K → End(E )⊗Q. A K -orientation induces a primitive
O-orientation if ι(O) = End(E ) ∩ ι(K ). In that case, the pair
(E , ι) is called an O-oriented curve.

ι embeds O into End(E ) (and no superorder of O)

We will represent the orientation by a kernel representation of
an endomorphism corresponding to a generator of O

SCALLOP: scaling the CSI-FiSh 9/23



Oriented elliptic curves

Let O be an imaginary quadratic order, e.g. Z[i ], Z[
√
−p], in an

imaginary quadratic field K .

Definition

For any elliptic curve E , a K -orientation is a ring homomorphism
ι : K → End(E )⊗Q. A K -orientation induces a primitive
O-orientation if ι(O) = End(E ) ∩ ι(K ). In that case, the pair
(E , ι) is called an O-oriented curve.

ι embeds O into End(E ) (and no superorder of O)

We will represent the orientation by a kernel representation of
an endomorphism corresponding to a generator of O

SCALLOP: scaling the CSI-FiSh 9/23



Oriented elliptic curves

Let O be an imaginary quadratic order, e.g. Z[i ], Z[
√
−p], in an

imaginary quadratic field K .

Definition

For any elliptic curve E , a K -orientation is a ring homomorphism
ι : K → End(E )⊗Q. A K -orientation induces a primitive
O-orientation if ι(O) = End(E ) ∩ ι(K ). In that case, the pair
(E , ι) is called an O-oriented curve.

ι embeds O into End(E ) (and no superorder of O)

We will represent the orientation by a kernel representation of
an endomorphism corresponding to a generator of O

SCALLOP: scaling the CSI-FiSh 9/23



Group actions on oriented curves

Let X be the set of primtively O-oriented curves (E , ι) up to
isomorphism and Galois conjugacy

Invertible ideals of O act on X , principal ideals act trivially,
i.e. get group action by class group Cl(O)

Cl(O)× X → X

Group action is free and transitive (see [Onu21])

Example: CSIDH, where O = Z[
√
−p] with orientations that

send
√
−p to Frobenius endomorphisms
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Group actions on oriented curves cont.

Computing group action using isogenies:

Let a ⊂ O ideal, (E , ιE ) an elliptic curve with O-orientation

Define E [a] =
⋂

α∈a ker ιE (α) and let

φE
a := E → Ea := E/E [a] and ιEa

(x) =
1

n(a)
φE
a ◦ ι(x) ◦ φ̂E

a

a ⋆ (E , ιE ) = (Ea, ιEa
)
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Computing with oriented curves

How to represent and compute with different orientation
effectively?

CSIDH:

Ideal li ⊂ Z[
√
−p] acts through an isogeny of degree

ℓi = n(li ) whose kernel is stabilized by the Frobenius
endomorphism π corresponding to

√
−p

To compute li ⋆ E it is sufficient to evaluate the Frobenius
endomorphism π on E [ℓi ] and determine its eigenspaces
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Computing with oriented curves

How to represent and compute with different orientation
effectively?

CSIDH General:

Ideal li ⊂ Z[
√
−p] O acts through an isogeny of degree

ℓi = n(li ) whose kernel is stabilized by
the Frobenius endomorphism π corresponding to

√
−p

endomorphism ω corresponding to a generator of O

To compute li ⋆ E it is sufficient to evaluate
the Frobenius endomorphism π endomorphism ω on E [ℓi ]
and determine its eigenspaces

Compute (kernel) representation of endomorphism
corresponding to generator of O under orientation
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Wishlist

To compute the class group structure, we want:

|Cl(O0)|

O = Z+ fO0 such that factorisation of conductor f known

|Cl(O)| smooth enough to be able to compute the lattice of
relations between ideal actions

To represent and compute with oriented curves explicitly, we want:

A generator α of O of smooth norm L21L2 to efficiently
compute and represent corresponding endomorphisms

A primitively O-oriented starting curve
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SCALLOP: Precomputation
SCALable isogeny action based on Oriented supersingular curves with Prime conductor

Take O0 with |Cl(O0)| = 1, we take O0 = Z[i ]

Generate candidates for O with smooth generator until

conductor f ≈ 22λ is prime (avoids factoring f )

class number |Cl(O)| is reasonably smooth
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SCALLOP: Precomputation (contd.)

Fix ℓ1, . . . , ℓn to be the smallest n split primes in Z[i ],
e.g. (5) = (2 + i)(2− i), (13) = (3 + 2i)(3− 2i) etc.

Randomly pick signs for ideals (or their squares) above ℓi and
consider product of generators ⇒ smooth norm L21L2 by
construction, i.e. generator corresponds to endomorphism with
kernel representation points of order L1 and L1L2

Test primality of conductor f of product, then compute
corresponding class number and test smoothness using ECM
factoring with abort

Asymptotically, Lf (1/2) search for Lf (1/2)-smooth |Cl(O)|
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SCALLOP: Precomputation (contd.)

Choose prime characteristic p to maximise efficiency of
evaluating the group action (and large enough to prevent
attacks), i.e. take p =

∏
i ℓi ± 1

Compute lattice of relations L by solving instances of discrete
logarithm problem in Cl(O) (in smooth enough group)

Compute reduced basis of L using BKZ as in CSI-FiSh

Generate a starting curve with O-orientation
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Precomputation: Generation of starting curve

E0 E ′ι(α)=ω0 ι′(α)=ω′

φ, deg(φ)=f

O0 special extremal order (see [KLPT14]) ⇒ can find γ ∈ O0

of norm M efficiently as soon as M > p

Let ℓ0 small prime not dividing L1L2 and h ∈ Z such that
ℓh0 > p/f and compute γ ∈ O0 of norm f ℓh0 whose ideal
corresponds to endomorphism ψ ◦ φ
Push kernel of ω0 through ψ ◦ φ (see e.g. [FKMT22]),
brute-force ψ and compute ω′
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Precomputation: Generation of starting curve

E0 E ′ι(α)=ω0 ι′(α)=ω′

φ, deg(φ)=f

Given characteristic p and large prime f with O = Z+ fO0 = Z[α]
for some α of norm L21L2. How to compute effective primitive O
orientation (E ′, ι′)?

Push kernel of ω0 through φ, but deg(f ) large prime
⇒ can’t use Vélu’s formulae
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brute-force ψ and compute ω′
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SCALLOP: Online phase

Generator of smooth norm of O
corresponds to endomorphism ωE

of smooth degree which we
represented by kernels of two
isogenies

ωE stabilizes kernels of isogenies
used to compute group action

Evaluate group action by
transporting explicit orientation
along the group action

Computing explicit orientation
leads to slowdown compared to
CSI-FiSh with canonical
orientation

Figure: Isogeny volcano
for O-oriented curves in
SCALLOP.
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Effective Group Actions: CSI-FiSh vs SCALLOP

CSI-FiSh SCALLOP

O = Z[
√
−p] O = Z+ fO0, f prime

Expensive class group
computation, only feasible
for CSIDH-512 parameters

|Cl(O)| free, sieve until
smooth enough to compute
lattice of relations

Evaluation of group action
with implicit orientation

Need to compute explicit
orientation along group
action

Online phase fast Online phase slower, but
feasible for larger security
levels
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Implementation

Proof of concept implementation in C++ available at:
https://github.com/isogeny-scallop/scallop

Concrete instantiation for SCALLOP matching the security
levels of CSIDH-512 and CSIDH-1024

Public keys of size roughly 1600bits for SCALLOP-512 and
2300bits for SCALLOP-1024

Evaluation of the group action takes about 35 seconds for the
smaller and 12.5 minutes for the larger parameter set

Implementation shows feasibility, but further work needed to
make the group action practical
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Summary

Provide framework to evaluate a new family of group actions
on oriented elliptic curves via isogenies

Concrete instantiations of class group action using action of
class group of imaginary quadratic order with large prime
conductor f inside an imaginary quadratic field of small
discriminant (SCALLOP)

This instantiates effective group actions for security levels
previously out of reach

Can build schemes that require to uniquely represent and
efficiently act by arbitrary group elements for larger security
levels than with CSIDH-512 group action
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Questions

Open

How to make group action
evaluation faster?

How to resolve the scaling
issues of SCALLOP?

Thank you!

More details:
ia.cr/2023/058
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