SCALLOP: scaling the CSI-FiSh

Luca De Feo Tako Boris Fouotsa Péter Kutas Antonin Leroux **Simon-Philipp Merz** Lorenz Panny Benjamin Wesolowski

> May 2023 **PKC 2023, Atlanta**

Cryptographic group actions

Definition

A group action of a group G on a set X is a function

$$\star: G \times X \to X$$

 $e \star x = x$

$$(gh) \star x = g \star (h \star x)$$

Cryptographic group actions

Definition

A group action of a group G on a set X is a function

$$\star: G \times X \to X$$

 $\bullet \star x = x$

$$(gh) \star x = g \star (h \star x)$$

- Vectorization prob.: given $x, y \in X$, find $g \in G$ s.t. $y = g \star x$
- Parallelization prob.: given $x, g \star x, h \star x$, find $(gh) \star x$

Cryptographic group actions

Definition

A group action of a group G on a set X is a function

$$\star: G \times X \to X$$

$$e \star x = x$$

$$(gh) \star x = g \star (h \star x)$$

- Vectorization prob.: given $x, y \in X$, find $g \in G$ s.t. $y = g \star x$
- Parallelization prob.: given $x, g \star x, h \star x$, find $(gh) \star x$
- Candidates for post-quantum Diffie-Hellman key exchange, e.g. reasonably efficient isogeny-based scheme CSIDH (NIKE)
 SCALLOP: a new isogeny-based group action

CSIDH: a restricted effective group action

CSIDH is not an effective group action (EGA)!

CSIDH: a restricted effective group action

CSIDH is not an effective group action (EGA)!

Caution

Evaluating group action $\mathfrak{g} \star E$ is not efficient for all group elements $\mathfrak{g} \in G$ and $E \in X$!

CSIDH: a restricted effective group action

CSIDH is not an effective group action (EGA)!

Caution

Evaluating group action $\mathfrak{g} \star E$ is not efficient for all group elements $\mathfrak{g} \in G$ and $E \in X$!

Solution:

- Restrict group action to list of elements l₁,..., l_n spanning G such that l_i * E can be efficiently evaluated for every E
- Can evaluate action $\prod_i l_i^{e_i} \star E$ efficiently as long as exponents $(e_1, \ldots, e_n) \in \mathbb{Z}^n$ are sufficiently small
- \Rightarrow <u>Restricted</u> effective group action (REGA)

General strategy: REGA to EGA

Precomputation done once:

- Compute cardinality of acting group |G|
- Compute lattice of relations L of l_i, i.e. lattice spanned by vectors (e₁,..., e_n) such that ∏_i l^{e_i}_i ∈ Z acts trivially on set X
- Compute reduced basis of *L* suitable to solve CVP instances efficiently

General strategy: REGA to EGA

Precomputation done once:

- Compute cardinality of acting group |G|
- Compute lattice of relations L of l_i, i.e. lattice spanned by vectors (e₁,..., e_n) such that ∏_i l^{e_i}_i ∈ Z acts trivially on set X
- Compute reduced basis of *L* suitable to solve CVP instances efficiently

Online phase to evaluate $l_1^e \star E$ (for all $e \in \mathbb{Z}$):

Solve (approximate) CVP of (e, 0, ..., 0) in L to find decomposition l^e₁ = ∏_i l^{e_i}_i with small exponents e_i

• Evaluate the restricted group action $\prod_{i} l_{i}^{e_{i}} \star E$

General strategy: REGA to EGA

Precomputation done once:

- Compute cardinality of acting group |G|
- Compute *lattice of relations* \mathcal{L} of l_i , i.e. lattice spanned by vectors (e_1, \ldots, e_n) such that $\prod_i l_i^{e_i} \in \mathbb{Z}$ acts trivially on set X
- \blacksquare Compute reduced basis of $\mathcal L$ suitable to solve CVP instances efficiently

Online phase to evaluate $l_1^e \star E$ (for all $e \in \mathbb{Z}$):

- Solve (approximate) CVP of (e, 0, ..., 0) in L to find decomposition l^e₁ = ∏_i l^{e_i}_i with small exponents e_i
- Evaluate the restricted group action $\prod_{i} l_{i}^{e_{i}} \star E$

Caution

Depending on the group G, the precomputation might be computationally infeasible!

CSI-FiSh signature scheme [BKV19]

- Based on group action of CSIDH-512
- Precompute *lattice of relations* L for the generators used in CSIDH-512 using an index-calculus approach
- CSI-FiSh required a world-record class group computation to obtain the lattice for the smallest CSIDH parameters

CSI-FiSh signature scheme [BKV19]

- Based on group action of CSIDH-512
- Precompute *lattice of relations* L for the generators used in CSIDH-512 using an index-calculus approach
- CSI-FiSh required a world-record class group computation to obtain the lattice for the smallest CSIDH parameters

Caution

Computing the structure of the acting group for larger CSIDH parameters is infeasible with currently known algorithms.

CSI-FiSh signature scheme [BKV19]

- Based on group action of CSIDH-512
- Precompute *lattice of relations* L for the generators used in CSIDH-512 using an index-calculus approach
- CSI-FiSh required a world-record class group computation to obtain the lattice for the smallest CSIDH parameters

Caution

Computing the structure of the acting group for larger CSIDH parameters is infeasible with currently known algorithms.

Motivation

Introduce group action that solves the scaling issue of CSI-FiSh (to some extent..)

Group actions on oriented curves

- Let \mathfrak{O} be an imaginary quadratic order, e.g. $\mathbb{Z}[\sqrt{-p}]$
- Let X be the set of supersingular elliptic curves up to isomorphism such that D embeds into their endomorphism ring
- Invertible ideals of D act on X, principal ideals act trivially,
 i.e. group action by class group Cl(D)

 $\mathsf{Cl}(\mathfrak{O}) \times X \to X$

CSIDH: special case where $\mathfrak{O} = \mathbb{Z}[\sqrt{-p}]$

Group actions on oriented curves

- Let \mathfrak{O} be an imaginary quadratic order, e.g. $\mathbb{Z}[\sqrt{-p}]$
- Let X be the set of supersingular elliptic curves up to isomorphism such that D embeds into their endomorphism ring
- Invertible ideals of D act on X, principal ideals act trivially,
 i.e. group action by class group Cl(D)

 $Cl(\mathfrak{O}) \times X \to X$

CSIDH: special case where $\mathfrak{O} = \mathbb{Z}[\sqrt{-p}]$

Can we use different \mathfrak{O} ?

How to represent and compute with different orientation?

- \blacksquare Take \mathfrak{O}_0 with $|\mathsf{Cl}(\mathfrak{O}_0)|=1$
- \blacksquare Generate candidates for $\mathfrak O$ with smooth generator until
 - conductor f is prime (avoids factoring f)
 - class number |Cl(D)| is reasonably smooth (asymptotically, L_f(1/2) search for L_f(1/2)-smooth |Cl(D)|)

- \blacksquare Take \mathfrak{O}_0 with $|\mathsf{Cl}(\mathfrak{O}_0)|=1$
- Generate candidates for \mathfrak{O} with smooth generator until
 - conductor f is prime (avoids factoring f)
 - class number |Cl(D)| is reasonably smooth (asymptotically, L_f(1/2) search for L_f(1/2)-smooth |Cl(D)|)
- Compute lattice of relations L by solving instances of discrete logarithm problem in Cl(D)

- \blacksquare Take \mathfrak{O}_0 with $|\mathsf{Cl}(\mathfrak{O}_0)|=1$
- Generate candidates for \mathfrak{O} with smooth generator until
 - conductor f is prime (avoids factoring f)
 - class number |Cl(D)| is reasonably smooth (asymptotically, L_f(1/2) search for L_f(1/2)-smooth |Cl(D)|)
- Compute lattice of relations L by solving instances of discrete logarithm problem in Cl(D)
- Compute reduced basis of \mathcal{L} using BKZ as in CSI-FiSh
- Generate a starting curve with \mathfrak{O} -orientation

SCALLOP: Online phase

- Generator of smooth norm of O corresponds to endomorphism ω_E
 of smooth degree which we
 represented by kernels of two
 isogenies
- ω_E stabilizes kernels of isogenies used to compute group action

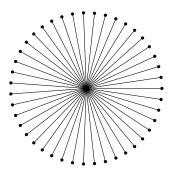


Figure: Isogeny volcano for \mathfrak{O} -oriented curves in SCALLOP.

SCALLOP: Online phase

- Generator of smooth norm of O corresponds to endomorphism ω_E
 of smooth degree which we
 represented by kernels of two
 isogenies
- ω_E stabilizes kernels of isogenies used to compute group action
- Evaluate group action by transporting explicit orientation along the group action
- Computing explicit orientation leads to slowdown compared to CSI-FiSh with canonical orientation

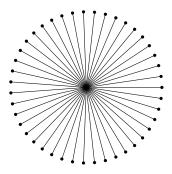


Figure: Isogeny volcano for \mathcal{D} -oriented curves in SCALLOP.

Effective Group Actions: CSI-FiSh vs SCALLOP

CSI-FiSh

<u>SCALLOP</u>

•
$$\mathfrak{O} = \mathbb{Z}[\sqrt{-p}]$$

•
$$\mathfrak{O} = \mathbb{Z} + f \mathfrak{O}_0$$
, f prime

Effective Group Actions: CSI-FiSh vs SCALLOP

CSI-FiSh

- $\bullet \mathfrak{O} = \mathbb{Z}[\sqrt{-p}]$
- Expensive class group computation, only feasible for CSIDH-512 parameters

SCALLOP

- $\mathfrak{O} = \mathbb{Z} + f \mathfrak{O}_0$, f prime
- |Cl(D)| free, sieve until smooth enough to compute lattice of relations

Effective Group Actions: CSI-FiSh vs SCALLOP

CSI-FiSh

- $\mathfrak{O} = \mathbb{Z}[\sqrt{-p}]$
- Expensive class group computation, only feasible for CSIDH-512 parameters
- Evaluation of group action with implicit orientation
- Online phase fast

<u>SCALLOP</u>

- $\mathfrak{O} = \mathbb{Z} + f \mathfrak{O}_0$, f prime
- |Cl(D)| free, sieve until smooth enough to compute lattice of relations
- Need to compute explicit orientation along group action
- Online phase slower, but feasible for larger security levels

Proof of concept implementation in C++ available at: https://github.com/isogeny-scallop/scallop

- Concrete instantiation for SCALLOP matching the security levels of CSIDH-512 and CSIDH-1024
- Public keys of size roughly 1600bits for SCALLOP-512 and 2300bits for SCALLOP-1024

Proof of concept implementation in C++ available at: https://github.com/isogeny-scallop/scallop

- Concrete instantiation for SCALLOP matching the security levels of CSIDH-512 and CSIDH-1024
- Public keys of size roughly 1600bits for SCALLOP-512 and 2300bits for SCALLOP-1024
- Evaluation of the group action takes about 35 seconds for the smaller and 12.5 minutes for the larger parameter set
- Implementation shows feasibility, but further work needed to make the group action practical

 Provide framework to evaluate a new family of group actions on oriented elliptic curves via isogenies

- Provide framework to evaluate a new family of group actions on oriented elliptic curves via isogenies
- Concrete instantiations of class group action using action of class group of imaginary quadratic order with large prime conductor *f* inside an imaginary quadratic field of small discriminant (SCALLOP)
- This instantiates effective group actions for security levels previously out of reach

- Provide framework to evaluate a new family of group actions on oriented elliptic curves via isogenies
- Concrete instantiations of class group action using action of class group of imaginary quadratic order with large prime conductor *f* inside an imaginary quadratic field of small discriminant (SCALLOP)
- This instantiates effective group actions for security levels previously out of reach
- Can build schemes that require to uniquely represent and efficiently act by *arbitrary* group elements for larger security levels than with CSIDH group action

Questions

Open

- How to make group action evaluation more practical?
- How to resolve the scaling issues of SCALLOP?

Questions

Open

- How to make group action evaluation more practical?
- How to resolve the scaling issues of SCALLOP?

Thank you!

More details: ia.cr/2023/058

Questions

Open

- How to make group action evaluation more practical?
- How to resolve the scaling issues of SCALLOP?

Thank you!

More details: ia.cr/2023/058

